HTTP_CONNECTION:Keep-Alive
HTTP_ACCEPT:text/html,image/png,image/jpeg,image/pjpeg,image/x-xbitmap,image/svg+xml,image/gif;q=0.9,*/*;q=0.1
HTTP_ACCEPT_ENCODING:gzip, identity;q=0.9
HTTP_ACCEPT_LANGUAGE:en, *
HTTP_HOST:api.dev.ecatonline.co.za
HTTP_IF_MODIFIED_SINCE:Wed, 14 Feb 2024 09:34:35 GMT
HTTP_MAX_FORWARDS:10
HTTP_REFERER:http://www.magnet.co.za/news.html?page=2
HTTP_USER_AGENT:Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
HTTP_X_FORWARDED_HOST:www.magnet.co.za
HTTP_X_ORIGINAL_URL:/news.html?page=12
HTTP_X_FORWARDED_FOR:169.0.58.185:52440
HTTP_X_ARR_SSL:3072|256|C=US, O=Let's Encrypt, CN=R3|CN=magnet.co.za
HTTP_X_ARR_LOG_ID:91872a1f-1b77-4697-b84d-f5ac4d6fe130
[
{
"title": "LEARN | Understanding Solar Irradiance pt 2",
"nid": "568",
"body": "\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022Solar pic\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022b5a40355-f3f5-4fc7-a7a2-334bfcae51c4\u0022 height=\u0022252\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/sun_jpg_jpg-1.jpg\u0022 width=\u0022448\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn this NEW series, we introduce you to solar irradiance. In the \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Understanding-Solar-Irradiance-pt-1\u0022\u003Efirst instalment\u003C/a\u003E\u003C/strong\u003E, we touched on what affects irradiance, how it is measured and the types of irradiance. In this article, the second and final instalment in the series, we give an overview of solar potential maps\u00A0and applications of solar irradiance.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ESolar irradiance is a very important quantity that is studied extensively especially in the design of solar technologies. Understanding and measuring solar irradiance has important implications, such as the heating and cooling loads of buildings, the prediction of energy generation from solar power plants, and weather forecasting.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EApplications of Solar Irradiance Measurement\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E1. Solar power\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ESunlight carries radiant energy in the wavelengths of visible light. Radiant energy may be developed for solar power generation.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ESolar irradiation figures are used to plan the deployment of solar power systems. In many countries, the figures can be obtained from an insolation map or from insolation tables that reflect data over the prior 30\u201350 years. Different solar power technologies are able to use different components of the total irradiation. While solar photovoltaics panels are able to convert to electricity both direct irradiation and diffuse irradiation, concentrated solar power is only able to operate efficiently with direct irradiation, thus making these systems suitable only in locations with relatively low cloud cover.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EBecause solar collector\u2019s panels are almost always mounted at an angle towards the sun, insolation must be adjusted to prevent estimates that are inaccurately low for winter and inaccurately high for summer. This also means that the amount of sun falling on a solar panel at high latitude is not as low compared to one at the equator, as would appear from just considering insolation on a horizontal surface.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EPhotovoltaic panels are rated under standard conditions to determine the Wp (watt peak) rating, which can then be used with insolation to determine the expected output, adjusted by factors such as tilt, tracking and shading (which can be included to create the installed Wp rating). For example, insolation values range 800\u2013950 kWh/(kWp\u00B7y) in Norway to up to 2,900 kWh/(kWp\u00B7y) in Australia.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E2. Buildings\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn construction, insolation is an important consideration when designing a building for a particular site.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe projection effect can be used to design buildings that are cool in summer and warm in winter, by providing vertical windows on the equator-facing side of the building (the south face in the northern hemisphere, or the north face in the southern hemisphere). This maximizes insolation in the winter months when the Sun is low in the sky and minimizes it in the summer when the Sun is high. (The Sun\u0027s north/south path through the sky spans 47\u00B0 through the year).\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E3. Civil engineering\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn civil engineering and hydrology, numerical models of snowmelt runoff use observations of insolation. This permits estimation of the rate at which water is released from a melting snowpack. Field measurement is accomplished using a pyranometer.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E4. Climate research\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIrradiance plays a part in climate modeling and weather forecasting. A non-zero average global net radiation at the top of the atmosphere is indicative of Earth\u0027s thermal disequilibrium as imposed by climate forcing.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E5. Space\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EInsolation is the primary variable affecting equilibrium temperature in spacecraft design and planetology.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ESolar activity and irradiance measurement is a concern for space travel. For example, the American space agency, NASA, launched its Solar Radiation and Climate Experiment (SORCE) satellite with Solar Irradiance Monitors.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003ESolar Potential Maps\u00A0\u00A0\u00A0\u00A0 \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAssessment and mapping of solar potential at the global, regional and country levels have been the subject of significant academic and commercial interest. One of the earliest attempts to carry out comprehensive mapping of solar potential for individual countries was the Solar \u0026amp; Wind Resource Assessment (SWERA) project, funded by the\u00A0\u003Ca href=\u0022https://en.wikipedia.org/wiki/United_Nations_Environment_Program\u0022 title=\u0022United Nations Environment Program\u0022\u003EUnited Nations Environment Program\u003C/a\u003E\u00A0and carried out by the US\u00A0\u003Ca href=\u0022https://en.wikipedia.org/wiki/National_Renewable_Energy_Laboratory\u0022 title=\u0022National Renewable Energy Laboratory\u0022\u003ENational Renewable Energy Laboratory\u003C/a\u003E. Other examples include global mapping by the\u00A0\u003Ca href=\u0022https://en.wikipedia.org/wiki/National_Aeronautics_and_Space_Administration\u0022 title=\u0022National Aeronautics and Space Administration\u0022\u003ENational Aeronautics and Space Administration\u003C/a\u003E\u00A0and other similar institutes, many of which are available on the Global Atlas for Renewable Energy provided by the\u00A0\u003Ca href=\u0022https://en.wikipedia.org/wiki/International_Renewable_Energy_Agency\u0022 title=\u0022International Renewable Energy Agency\u0022\u003EInternational Renewable Energy Agency\u003C/a\u003E. A number of commercial firms now exist to provide solar resource data to solar power developers, including 3E, Clean Power Research, SoDa Solar Radiation Data, Solargis, Vaisala (previously 3Tier), and Vortex, and these firms have often provided solar potential maps for free. In January 2017 the\u00A0\u003Ca href=\u0022https://en.wikipedia.org/wiki/Global_Solar_Atlas\u0022 title=\u0022Global Solar Atlas\u0022\u003EGlobal Solar Atlas\u003C/a\u003E\u00A0was launched by the\u00A0\u003Ca href=\u0022https://en.wikipedia.org/wiki/World_Bank\u0022 title=\u0022World Bank\u0022\u003EWorld Bank\u003C/a\u003E, using data provided by Solargis, to provide a single source for high-quality solar data, maps, and\u00A0\u003Ca href=\u0022https://en.wikipedia.org/wiki/GIS\u0022 title=\u0022GIS\u0022\u003EGIS\u003C/a\u003E\u00A0layers covering all countries.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022Solar maps\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002229534e62-603a-494f-a21b-21208da7167f\u0022 height=\u0022378\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Solar%20maps.jpg\u0022 width=\u0022544\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ESolar radiation maps are built using databases derived from satellite imagery, as for example using visible images from Meteosat Prime satellite. A method is applied to the images to determine solar radiation. One well validated satellite-to-irradiance model is the SUNY model.\u00A0The accuracy of this model is well evaluated. In general, solar irradiance maps are accurate, especially for Global Horizontal Irradiance.\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003ENeed a Solar or Back-Up Power solution? \u003Cstrong\u003E\u003Cu\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar%20Enquiry\u0022\u003ECHAT\u003C/a\u003E\u003C/u\u003E\u003C/strong\u003E to us now!\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://en.wikipedia.org/wiki/Solar_irradiance\u0022\u003Ehttps://en.wikipedia.org/wiki/Solar_irradiance\u003C/a\u003E\u003C/p\u003E\n",
"created": "Nov 2021",
"terms": "Solar, Education"
},
{
"title": "PRODUCT NEWS | A-eberle\u0026#039;s PQ-Box 150",
"nid": "567",
"body": "\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022PQ 1\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022e8f62041-67ac-438c-b404-71eb106540d6\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Power%20Quality.png\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EThe Power Quality Issue\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EPower Quality (or PQ, as it is commonly referred) is an increasingly newsworthy issue. Growing use of semiconductor-based electronic equipment and non-linear loads (computers \u0026amp; their peripherals, data servers, adjustable speed drivers etc.) along with the rapid integration of renewable energy sources into grid networks brings with it new challenges for the PQ environment.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EThe Importance of PQ Monitoring\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EEquipment installed in a facility impacts the quality of the power supply to the system, potentially leading to interference with, or damage to, facility loads or utility systems. The quality of electrical power is an important contributing factor to the successful operation of any business, and this can be achieved through continuous power monitoring. This undoubtedly assists in the detection, recording and prevention of power quality problems. \u00A0\u00A0\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EThe Solution: A-eberle\u2019s PQ-Box 150\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe PQ-Box 150 is a high-performance, portable network-analyser, power meter and transient recorder. This user-friendly device was developed for mobile operation (IP65), and is applicable for measurements in public networks (600V CAT IV), as well as for measurements in industrial environments (up to 1000V measurement voltage). The PQ-Box 150 meets the demands of IEC 61000-4-30 Ed.3 (2015) standard for a class A-device.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ENEW: The PQ-Box App is now online!\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EThe PQ-Box App boasts numerous features including\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003ERecording control \u2013 Start, stop a measurement and send a manual trigger via the app.\u003C/li\u003E\n\u003Cli\u003EMultilingual - Available in eight languages.\u003C/li\u003E\n\u003Cli\u003EGPS data from a smartphone or tablet can be sent as additional information to the measurement file.\u003C/li\u003E\n\u003Cli\u003EIdentification of the PQ-Box type and the actual licence.\u003C/li\u003E\n\u003Cli\u003EConnection via the app is also possible if the standard Wifi IP address (192.168.2.4) differs from the PQ-Box (150/200/300).\u003C/li\u003E\n\u003Cli\u003EAllows for communication protocol between the app and PQ-Box.\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp\u003EYou can download the app (Android) from GooglePlayStore.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022PQ2\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002201d7e645-4a4c-46f9-b2dc-bb2c64885d2c\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/PQ%20150.JPG\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EResources: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E1. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-electrical/news.php?type=articles\u0026amp;name=LEARN--Introduction-to-Power-Quality-part-4---Power-Factor\u0022\u003ELEARN\u003C/a\u003E\u003C/strong\u003E about Power Quality\u003C/p\u003E\n\u003Cp\u003E2. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/contactus.html\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to us about an A-eberle PQ Solution for your facility\u003C/p\u003E\n\u003Cp\u003E3. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003ESUBSCRIBE\u003C/a\u003E\u003C/strong\u003E to receive informative articles like these, straight to your inbox\u003C/p\u003E\n\u003Cp\u003E4. \u003Ca href=\u0022https://www.youtube.com/watch?v=SwNAkAB-6YQ\u0026amp;list=PL0AHvVniUcgzRuG8tgyPN_MuqW83G2YMA\u0026amp;index=96\u0022\u003E\u003Cstrong\u003EWATCH\u003C/strong\u003E\u003C/a\u003E a quick, informative video on the PQ-Box 150\u003C/p\u003E\n",
"created": "Nov 2021",
"terms": "Electrical, Products"
},
{
"title": "LEARN | The electrical installation risk assessment",
"nid": "565",
"body": "\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022Electrical installation\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022620a8c30-f907-4222-b312-9dbf7afbd3d0\u0022 height=\u0022259\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Electrical-Service%201.jpg\u0022 width=\u0022619\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003EElectrical contractors face risks on the jobsite every day. But risk assessments for electrical installations, when performed correctly, can help reduce the overall risk of injury.\u003C/p\u003E\n\u003Cp\u003EIn this article, we take a deeper dive into this invaluable tool.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat are electrical installation risk assessments?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAn electrical installation risk assessment is a procedure that helps electrical workers identify hazards, assess risks, and implement risk controls before beginning work at a site. During the assessment, a worker must weigh the\u00A0likelihood\u00A0of an electrical occurrent, and the\u00A0severity\u00A0of a potential injury.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EThe case for electrical installation risk assessments\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u201CIt won\u2019t happen to me. I\u2019m safe.\u201D While electrical contractors may feel confident working with electrical equipment, the potential risks of the job, including shock and\u00A0\u003Cstrong\u003E\u003Ca href=\u0022https://www.se.com/ww/en/work/services/field-services/electrical-distribution/optimise/arc-flash-solutions/?utm_source=risk-assessment-blog\u0026amp;utm_medium=arc-flash-cta\u0026amp;utm_campaign=contractors\u0022\u003Earc flash,\u003C/a\u003E\u003C/strong\u003E warrant extra precautions.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn many cases, safe electrical work practices, such as performing a risk assessment for circuits and other electrical installations, can help contractors avoid both shock and arc flash events.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022electrical risk assessment\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00229ecef874-30d9-4b16-af44-2edd14b7a929\u0022 height=\u0022254\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/NAM_PBU_US_ArcFlash_EmailHero_12.14.16_600x407.jpg\u0022 width=\u0022375\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EThree steps in an electrical installation risk assessment matrix\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EHere are three steps required as part of any risk assessment for electrical installations.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E1.\u00A0\u00A0\u00A0\u00A0\u00A0 Evaluate the likelihood of occurrence\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe likelihood of occurrence will vary depending on the work performed. For example, there\u2019s a higher chance of an electrical event when performing voltage testing on energized conductors than when operating a circuit breaker handle.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EEquipment condition is also a factor that may impact the likelihood of an electrical occurrence, especially if the equipment is improperly rated or maintained. Because of this, equipment maintenance documents and any relevant safety information are a must-have\u00A0for electrical workers.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E2.\u00A0\u00A0\u00A0\u00A0\u00A0 Determine the severity of a potential injury\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe severity of a potential injury depends on the type of electrical occurrence.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EFor shock hazards, this is simple to determine. The severity of an injury relates back to the voltage and the path that current will follow as it travels through the body.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EHowever, \u003Cstrong\u003E\u003Ca href=\u0022https://www.youtube.com/watch?v=6katzNnaNKc\u0026amp;list=PL0AHvVniUcgwcgSxZ8bJbYGbHrqklEBLp\u0026amp;index=11\u0022\u003Efor arc flash hazards\u003C/a\u003E\u003C/strong\u003E, the severity is based on the available incident energy at that point in the electrical system.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow do you determine the incident energy? \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIncident energy is the amount of energy generated during an arc flash event. Electrical contractors can estimate this by accessing circuit-specific information in the equipment documentation, such as the clearing time of the upstream overcurrent protection and the available fault current. Once the incident energy level is known, equipment should be marked according to National Standard requirements, so future workers can quickly identify the\u00A0incident energy level during servicing.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E3.\u00A0\u00A0\u00A0\u00A0\u00A0 Follow the risk control hierarchy\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EAfter assessing the likelihood of occurrence and severity of a potential injury, it\u2019s time to implement risk controls based on a hierarchy. These include:\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003E\u003Cstrong\u003EElimination:\u003C/strong\u003E Temporarily \u00A0eliminate the hazard to establish an electrically safe work condition\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003ESubstitution:\u003C/strong\u003E Substitute less-hazardous equipment, such as using non-electrical or battery-operated tools instead of cord- and plug-connected\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EEngineering controls:\u003C/strong\u003E Choose options that automatically reduce risk, including GFCI protection or factory-installed barriers\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EAwareness:\u003C/strong\u003E Alert people to the hazard by installing permanent or temporary signs, labels, barricades, etc.\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EAdministrative controls:\u003C/strong\u003E Complete all front-end work, such as establishing planning processes, attending training, obtaining permits, and clarifying work procedures\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EPPE:\u003C/strong\u003E Ensure personal protective equipment (PPE), such as insulated tools, clothing, and gloves, are available when needed\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAgain, these risk controls will vary depending on the site and the work being performed.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ETo increase safety in electrical environments, contractors must be able to recognize the hazards associated with electrical energy and then take the necessary precautions to avoid those\u00A0hazards.\u00A0 An electrical installation risk assessment is the tool to help you accomplish this \u2014 it is quite possibly the most important tool you need working around electrical equipment.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EResources: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E1. \u003Cstrong\u003E\u003Ca href=\u0022https://www.youtube.com/watch?v=6katzNnaNKc\u0026amp;list=PL0AHvVniUcgwcgSxZ8bJbYGbHrqklEBLp\u0026amp;index=11\u0022\u003EWATCH\u003C/a\u003E\u003C/strong\u003E a video on Arc Fault detection devices\u003C/p\u003E\n\u003Cp\u003E2. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/contactus.html\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to us for an electrical safety solution for your facility\u003C/p\u003E\n\u003Cp\u003E3. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/schneider-electric.html\u0022\u003ELEARN\u003C/a\u003E\u003C/strong\u003E more about Schneider Electric products and solutions\u003C/p\u003E\n\u003Cp\u003E4. \u003Cstrong\u003E\u003Ca href=\u0022https://shop.magnetgroup.co.za/#!items/schneider-electric\u0022\u003ESHOP\u003C/a\u003E\u003C/strong\u003E Schneider Electric on the Magnet Store\u003C/p\u003E\n\u003Cp\u003E5. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003ESUBSCRIBE\u003C/a\u003E\u003C/strong\u003E to get these informative articles straight to your inbox\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://blog.se.com/energy-regulations/2021/07/29/risk-assessment-electrical-contractors-important-tool/\u0022\u003Ehttps://blog.se.com/energy-regulations/2021/07/29/risk-assessment-electrical-contractors-important-tool/\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n",
"created": "Nov 2021",
"terms": "Electrical, Education, Schneider"
},
{
"title": "LEARN | Explosive Environments in Industry pt 2",
"nid": "564",
"body": "\u003Cp\u003E\u003Ca href=\u0022https://shop.magnet.co.za/items/explosion-proof?id=CD3D39A7-3A80-4AA0-9BE0-2AD595AED841\u0022\u003E\u003Cimg alt=\u0022Smoke\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022252663b1-d852-45da-a5fe-7e38e94256dd\u0022 height=\u0022254\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/a-comprehensive-explosion-protection-document-developed-for-a-leading-heating-company.jpg\u0022 width=\u0022507\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn \u003Ca href=\u0022https://www.magnet.co.za/news.html?type=articles\u0026amp;name=LEARN--Explosive-Environments-in-Industry-pt-1\u0022\u003E\u003Cstrong\u003EPART 1\u003C/strong\u003E\u003C/a\u003E of Explosive Environments, we introduced you to explosive environments in the workplace. We gave an overview on how to classify explosive areas according to the necessary standards, and explained the compliance standards your company should adhere to, for specific areas, at all times. Furthermore, we identify what to look for when installing and operating electrical equipment in an explosive area.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn \u003Cstrong\u003EPART 2\u003C/strong\u003E, we\u2019ll be covering temperature classification, IP ratings and nameplates. We end off with a summary of some explosions that took place at South African facilities.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cstrong\u003ESUBSCRIBE\u003C/strong\u003E\u003C/a\u003E to\u00A0receive these informative articles straight to your inbox!\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ETemperature Classification\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIt is required that the temperature class of selected equipment may not exceed the ignition temperature of any gas that is present in the atmosphere. The table below indicates the temperature class and the corresponding ratings.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://shop.magnet.co.za/items/explosion-proof?id=CD3D39A7-3A80-4AA0-9BE0-2AD595AED841\u0022\u003E\u003Cimg alt=\u0022table 1 EX \u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022ac6b60e1-ef8b-47da-b86d-9efced2d1d63\u0022 height=\u0022198\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Table%201_1.jpg\u0022 width=\u0022604\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe ambient temperature rating of the equipment must cover the full range of possible temperatures in the areas located. If the ambient temperature is not specified on the equipment, then the equipment must be operated within the ambient range of \u201320\u00B0to \u002B40\u00B0C.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EIngress Protection Ratings \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIt is vital that the ingress protection of equipment be suitable at all points where it is used. This is done to prevent any foreign objects or flammable substances from entering the equipment\u2019s enclosure. The IP rating is used to indicate the resistance offered by the fixture to the penetration of solids and liquids. The IP rating consists of a two-digit number. The first digit is used to identify the degree of protection, against the ingress of solids, whilst the second digit identifies the degree of protection against the ingress of liquids.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EClick here to \u003Ca href=\u0022https://www.magnet.co.za/external/magnet-atex-ip-rating-document.pdf\u0022\u003E\u003Cstrong\u003EDOWNLOAD\u003C/strong\u003E\u003C/a\u003E our IP Rating Chart.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EInformation Given on an Equipment\u2019s Nameplate\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EMost equipment nameplates will have some common items of information. Many of these are self-explanatory, and include:\u003C/p\u003E\n\u003Cp\u003E\u2022 Manufacturer\u003C/p\u003E\n\u003Cp\u003E\u2022 Manufacturer\u02BCs address\u003C/p\u003E\n\u003Cp\u003E\u2022 Model number\u003C/p\u003E\n\u003Cp\u003E\u2022 Serial number\u003C/p\u003E\n\u003Cp\u003E\u2022 Certification mark(s)\u003C/p\u003E\n\u003Cp\u003EThe manufacturers literature may help decipher the coding used for particular equipment. Example of a flameproof motor nameplate cipher,\u00A0below.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://shop.magnet.co.za/items/explosion-proof?id=CD3D39A7-3A80-4AA0-9BE0-2AD595AED841\u0022\u003E\u003Cimg alt=\u0022Figure 1 ex\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002206cc97e9-c80a-4e30-bab6-54ed4e3c1f0c\u0022 height=\u0022313\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Figure%201_1.JPG\u0022 width=\u0022834\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EExplosions that Occurred in South African Plants and Facilities\u003C/strong\u003E\u003C/p\u003E\n\u003Col\u003E\n\u003Cli\u003E\u003Cstrong\u003ESAPREF Refinery: 21 April 2004\u003C/strong\u003E\u003Cbr /\u003E\n\tA power failure caused a fire in the distillation unit with huge clouds of thick black smoke over South Durban.\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EEngen Refinery: 16 April 2006\u003C/strong\u003E\u003Cbr /\u003E\n\tA large explosion shook Wentworth and Merebank residents which left one worker injured. The worker was burnt due to asphalt falling on his arms when the fire was being extinguished.\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EEngen Refinery: 11 October 2006\u003C/strong\u003E\u003Cbr /\u003E\n\tResidents from surrounding areas reported a ball of black smoke from the stacks for an hour. This was caused by an electrical shutdown prompting fuel gas to be sent into the flares.\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003ESAPREF Refinery: 28 October 2006\u003C/strong\u003E\u003Cbr /\u003E\n\tA fire occurred in the diesel de-sulphurising unit. The fire lasted for 3-hours resulting in smoke throughout the South of Durban, which affected residents.\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EEngen Refinery: 19 November 2007\u003C/strong\u003E\u003Cbr /\u003E\n\tA storage tank that consisted of 7 million litres of petrol burned to the ground for 58 hours.\u003C/li\u003E\n\u003Cli value=\u00226\u0022\u003E\u003Cstrong\u003EKZN Oil: 26\u003Csup\u003Eth\u003C/sup\u003E March 2015\u003C/strong\u003E\u003Cbr /\u003E\n\tA fire erupted across Clairwood Racecourse that resulted in people and workers being evacuated.\u003C/li\u003E\n\u003Cli value=\u00227\u0022\u003E\u003Cstrong\u003EEngen Refinery: 4 December 2020\u003C/strong\u003E\u003Cbr /\u003E\n\tSeveral residential apartments nearby were burnt as a result of the refinery explosion, and a local child suffered from face and body burns.\u003C/li\u003E\n\u003C/ol\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003EConcerned about the equipment installed in explosive atmospheres at your facility? \u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003E\u003Cstrong\u003ECHAT\u003C/strong\u003E\u003C/a\u003E to us now!\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://shop.magnet.co.za/items/explosion-proof?id=CD3D39A7-3A80-4AA0-9BE0-2AD595AED841\u0022\u003E\u003Cstrong\u003ESHOP\u003C/strong\u003E\u003C/a\u003E Explosion Proof Lighting, Plugs and Sockets on the Magnet Store.\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESources:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.ee.co.za/article/explosive-environments-fundamentals-area-classification-2.html\u0022\u003Ehttps://www.ee.co.za/article/explosive-environments-fundamentals-area-classification-2.html\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.raytecled.com/blog/identifying-zone-0-zone-1-and-zone-2-hazardous-areas/\u0022\u003Ehttps://www.raytecled.com/blog/identifying-zone-0-zone-1-and-zone-2-hazardous-areas/\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.ee.co.za/wp-content/uploads/legacy/Hazardous%20area%20classifications%20(SANS10108).pdf\u0022\u003Ehttps://www.ee.co.za/wp-content/uploads/legacy/Hazardous%20area%20classifications%20(SANS10108).pdf\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.ee.co.za/article/138434.html\u0022\u003Ehttps://www.ee.co.za/article/138434.html\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://pmg.org.za/committee-meeting/31716/\u0022\u003Ehttps://pmg.org.za/committee-meeting/31716/\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n",
"created": "Oct 2021",
"terms": "Electrical, Education"
},
{
"title": "LEARN | Understanding Solar Irradiance pt 1",
"nid": "563",
"body": "\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022Sola irradiance\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022f2c4a1d2-eccb-4a6d-bba5-659f055be6e6\u0022 height=\u0022240\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/newsletter.jpg\u0022 width=\u0022551\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003ESolar irradiance is a very important quantity that is studied extensively especially in the design of solar technologies. Understanding and measuring solar irradiance has important implications, such as the heating and cooling loads of buildings, the prediction of energy generation from solar power plants, and weather forecasting.\u003C/p\u003E\n\u003Cp\u003EIn this NEW series, we introduce you to solar irradiance. In the first instalment, we touch on what affects irradiance, how it is measured and the types of irradiance. The second article in the series delves into solar potential mapping and applications of solar irradiance. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003ESUBSCRIBE\u003C/a\u003E\u003C/strong\u003E to get these informative articles straight to your inbox!\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat is solar irradiance?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003ESolar irradiance\u00A0is the\u00A0power\u00A0per unit area received from the\u00A0Sun\u00A0in the form of\u00A0electromagnetic radiation. This power or energy is a combination of the strength/intensity of the sunlight received, and the hours the sunlight falls at a particular place.\u003C/p\u003E\n\u003Cp\u003ESolar panels are designed with a quoted solar irradiance of 1000W/m2. This is not an average, it\u0027s only a chosen value so that standard comparisons can be performed. There are only two types of solar irradiance which are diffuse and beam irradiance.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat affects solar irradiance?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003ESolar irradiance is not uniform throughout. It differs from place to place and from time to time. The main factors that affect the amount of irradiance at a place are:\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003EOzone layer thickness\u003C/li\u003E\n\u003Cli\u003EHaze (dust and vapour)\u003C/li\u003E\n\u003Cli\u003EZenith angle\u003C/li\u003E\n\u003Cli\u003EExtend of cloud cover\u003C/li\u003E\n\u003Cli\u003EDistance travelled through the atmosphere\u003C/li\u003E\n\u003Cli\u003ESeasons\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat are the Units of Solar Irradiation Measurement?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EThe solar irradiance is measured in watt per square metre (W/m2) in SI units. Solar irradiance is often integrated over a given time period in order to report the radiant energy emitted into the surrounding environment (joule per square metre, J/m2) during that time period. This integrated solar irradiance is called solar irradiation, solar exposure, solar insolation, or insolation.\u003C/p\u003E\n\u003Cp\u003EThe solar energy industry uses watt-hour per square metre (Wh/m2) per unit time, to measure irradiance.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow is Solar Irradiance measured?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EThe solar irradiance at a place can be measured using a pyranometer or a pyrheliometer. These instruments differ in their principle of operation. They\u0027re normally mounted together with solar panels to monitor and assess the solar irradiance and the electricity generated.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat types of irradiance are measured?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EThere are several measured types of solar irradiance:\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E1. Total Solar Irradiance (TSI) \u003C/strong\u003Emeasures the overall wavelengths per unit area incident on the Earth\u2019s upper atmosphere.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E2. Diffuse Horizontal Irradiance (DHI) \u003C/strong\u003Eis the radiation at the surface of the Earth, from light scattered by the atmosphere.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E3. Direct Normal Irradiance (DNI) \u003C/strong\u003Eis a measure at the Earth\u2019s surface at a given location, with a surface element perpendicular to the Sun.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E4. Global Horizontal Irradiance (GHI) \u003C/strong\u003Eis the total irradiance from the Sun on a horizontal surface on Earth. GHI = DHI \u002B DNI x cos(\u0290)\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E5. Global Tilted Irradiance (GTI) \u003C/strong\u003Eis the total radiation received on a surface with defined tilt and azimuth, fixed or sun-tracking.\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E6. Global Normal Irradiance (GNI) \u003C/strong\u003Eis the total irradiance from the sun at the surface of Earth at a given location with a surface element perpendicular to the Sun.\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003ELook out for the second instalment of the series which covers solar potential mapping and applications of solar irradiance. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003ESUBSCRIBE\u003C/a\u003E\u003C/strong\u003E to get these informative articles straight to your inbox!\u003C/p\u003E\n\u003Cp\u003ENeed a Solar or Back-Up Power solution? \u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cstrong\u003ECHAT\u003C/strong\u003E\u003C/a\u003E to us now!\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003Ehttps://discover.hubpages.com/technology/All-about-solar-irradiance\u003C/p\u003E\n\u003Cp\u003Ehttps://en.wikipedia.org/wiki/Solar_irradiance\u003C/p\u003E\n",
"created": "Oct 2021",
"terms": "Solar, Education"
}
]
In this NEW series, we introduce you to solar irradiance. In the first instalment, we touched on what affects irradiance, how it is measured and the types of irradiance. In this article, the second and final instalment in the series, we give an overview of solar potential maps and applications of solar irradiance.
Solar irradiance is a very important quantity that is studied extensively especially in the design of solar technologies. Understanding and measuring solar irradiance has important implications, such as the heating and cooling loads of buildings, the prediction of energy generation ...
The Power Quality Issue
Power Quality (or PQ, as it is commonly referred) is an increasingly newsworthy issue. Growing use of semiconductor-based electronic equipment and non-linear loads (computers & their peripherals, data servers, adjustable speed drivers etc.) along with the rapid integration of renewable energy sources into grid networks brings with it new challenges for the PQ environment.
The Importance of PQ Monitoring
Equipment installed in a facility impacts the quality of the power supply to the system, potentially leading to interference with, or damage to, facility loads or u...
Electrical contractors face risks on the jobsite every day. But risk assessments for electrical installations, when performed correctly, can help reduce the overall risk of injury.
In this article, we take a deeper dive into this invaluable tool.
What are electrical installation risk assessments?
An electrical installation risk assessment is a procedure that helps electrical workers identify hazards, assess risks, and implement risk controls before beginning work at a site. During the assessment, a worker must weigh the likelihood of an electrical occurrent, and the severity of a potential in...
In PART 1 of Explosive Environments, we introduced you to explosive environments in the workplace. We gave an overview on how to classify explosive areas according to the necessary standards, and explained the compliance standards your company should adhere to, for specific areas, at all times. Furthermore, we identify what to look for when installing and operating electrical equipment in an explosive area.
In PART 2, we’ll be covering temperature classification, IP ratings and nameplates. We end off with a summary of some explosions that took place at South African facilities.
SUBSCRIBE to...
Solar irradiance is a very important quantity that is studied extensively especially in the design of solar technologies. Understanding and measuring solar irradiance has important implications, such as the heating and cooling loads of buildings, the prediction of energy generation from solar power plants, and weather forecasting.
In this NEW series, we introduce you to solar irradiance. In the first instalment, we touch on what affects irradiance, how it is measured and the types of irradiance. The second article in the series delves into solar potential mapping and applications of solar irr...