history background

News

HTTP_CONNECTION:Keep-Alive HTTP_ACCEPT:text/html,image/png,image/jpeg,image/pjpeg,image/x-xbitmap,image/svg+xml,image/gif;q=0.9,*/*;q=0.1 HTTP_ACCEPT_ENCODING:gzip, identity;q=0.9 HTTP_ACCEPT_LANGUAGE:en, * HTTP_HOST:api.dev.ecatonline.co.za HTTP_MAX_FORWARDS:10 HTTP_REFERER:http://www.magnet.co.za/solutions-solar/news.html HTTP_USER_AGENT:Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98) HTTP_X_FORWARDED_HOST:www.magnet.co.za HTTP_X_ORIGINAL_URL:/solutions-solar/news.html?page=2 HTTP_X_FORWARDED_FOR:169.0.58.185:52082 HTTP_X_ARR_SSL:3072|256|C=US, O=Let's Encrypt, CN=R3|CN=magnet.co.za HTTP_X_ARR_LOG_ID:c3c462b8-381f-4e03-a116-dbe542776e8d
[ { "title": "LEARN | The Importance of Solar System Design pt 1", "nid": "550", "body": "\u003Cp class=\u0022text-align-justify\u0022\u003EDid you know that the efficiency (energy yield) of a \u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-solar/index.php\u0022\u003E\u003Cstrong\u003Esolar system\u003C/strong\u003E\u003C/a\u003E is largely affected by the design of the system? The component choice will drive the behaviour of the module(s) and inverter(s). The orientation of the modules will drive the sun angles at each hour of the year, and therefore the total energy yield of the array. And the electrical design (module stringing, conductor sizes, etc.) will determine the system voltages, which impact wire losses and inverter efficiency.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn our NEW series, we unpack the importance of solar system design, and what it involves. In part one, we look at Mechanical Design, outlining the key design attributes, and their relationships with performance modelling calculations.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022mechanical design\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022646911fb-142a-43d5-9af4-7558f7e91975\u0022 height=\u0022238\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/solar-energy-worker-newsletter.jpg\u0022 width=\u0022476\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EUnderstanding Mechanical Design\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe mechanical design attributes are the most visible parts of a solar array. This section gives an overview of module choice (which modules are used, how many are installed), module orientation (how they are structured \u0026amp; oriented) and ends off with module spacing.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E1. Module Choice\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe specific module used on a project has a major impact on the overall design. The module form factor (size and weight) will determine the number of modules that can be designed on a system. The efficiency of the module (and therefore the module\u2019s rated power) determine the nameplate power for the system. And finally, the voltage and current rating of the module determines the electrical system designs, including how many modules can be wired in series, and how the strings must be fused. And of course, the cost of the module is a major driver in determining a project\u2019s financial returns.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAdditionally, other factors, such as temperature coefficient, fill factor, low-light performance, and binning tolerance, can all have an impact on a system\u2019s energy performance. The relative importance of these factors will depend on the size and location of an array.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022fig 1\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002238a85f80-763f-427f-a4a8-ab17e9ed161b\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Fig%201_Solar%20Module%20Specifications.jpg\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003E\u003Cem\u003ESolar Module Specifications \u003C/em\u003E\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E2. Module Orientation\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA module\u2019s orientation in a fixed-tilt array is given by its tilt and azimuth angles. These two measures define the direction of the collector\u2019s face:\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAzimuth defines the direction on a compass that the module is oriented. A zero degree azimuth corresponds to due North, 90 degrees will face East, 180 degree azimuth corresponds to due South.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ETilt defines the angle of incline of the module, with zero corresponding to completely flat, and 90 degrees corresponding to completely vertical.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022fig 2\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00222ccda832-a0a4-41a1-bdaa-dabd55864f85\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Fig%202_Module%20Tilt%20and%20Azimuth%20Angles.jpg\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003E\u003Cem\u003EModule Tilt and Azimuth Angles \u003C/em\u003E\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe most common orientation for a solar array would be an azimuth of toward the equator (180 degrees in the Northern Hemisphere) and a slight tilt (tilt of between 5-20 degrees). In some systems, such as tracked systems, these angles will change throughout the day based on the position of the sun.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E3. Row-to-row Spacing and Ground Coverage Ratio\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn commercial rooftop and ground-mount arrays, the spacing between the rows of modules is a critical design decision, as it has implications for the system size (since tighter spacing means that an array can fit more modules in a given space), and row-to-row shading (since closer racks of modules will shade each other more often).\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA common design metric to evaluate the module spacing is the Ground Coverage Ratio (GCR), which is the ratio of the total module area, divided by the total ground area of the array. GCR values will be below 1.0, often between 0.3 and 0.7. There is an inverse relationship between row-to-row spacing and GCR: as the rows are spaced more closely together, the site ground coverage ratio will increase.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAs GCR changes, there is generally a trade-off between a system\u2019s nameplate size and its energy yield. Lower GCR values will keep modules spaced far apart, which maximizes their individual production \u2013 however, this will result in a smaller-sized system. Higher GCR values will increase the system size, but will reduce the energy yield from higher cross-bank shading.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022fig 3\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00228325a3b2-6699-4009-a6cb-435b83cbab42\u0022 height=\u0022253\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Fig3_Array%20Row%20Spacing.jpg\u0022 width=\u0022779\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003E\u003Cem\u003EArray Row Spacing\u003C/em\u003E\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E4. System Sizing\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EThe size of a solar array indicates how much power it can deliver at peak conditions. The power level is often referred to as the \u201Cnameplate power\u201D of the array. System sizes are typically given in two different values: the DC power (the number of modules multiplied by their STC power rating), and the AC power (the number of inverters multiplied by their maximum rated AC output power). The ratio between the DC power and AC power is called the \u201CInverter loading ratio\u201D (ILR).\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003EIn the second instalment of the series, we will be discussing the importance of Electrical Design.\u003C/p\u003E\n\u003Cp\u003EConsidering a solar solution for your facility? \u003Cstrong\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar%20Enquiry\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to our experts for assistance now!\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003ESource:\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022http://www.folsomlabs.com/modeling#systemdesign\u0022\u003Ehttp://www.folsomlabs.com/modeling#systemdesign\u003C/a\u003E\u003C/p\u003E\n", "created": "Sep 2021", "terms": "Solar, Education" }, { "title": "READ | Innovation in Solar Technology Pt 5", "nid": "549", "body": "\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-solar/index.php\u0022\u003E\u003Cstrong\u003ESolar technology\u003C/strong\u003E\u003C/a\u003E is constantly evolving. Pioneers in the industry have contributed a great deal in innovation, advancing what we think we know about solar technology, into so much more! In this article, we introduce you to Hairy Solar Panels\u2026 Missed out on previous articles in the series? Catch up now\u2026\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-1\u0022\u003E\u003Cstrong\u003EPart 1 \u2013 Solar Glass\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Ca href=\u0022https://www.demo.ecatonline.co.za/websites/magnetgroup/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-2\u0022\u003E\u003Cstrong\u003EPart 2 \u2013 Thin Film Solar Panels\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-3\u0022\u003E\u003Cstrong\u003EPart 3 \u2013 Perovskite Solar Panels\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-4\u0022\u003E\u003Cstrong\u003EPart 4 \u2013 Coloured Solar Panels\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EPart 5 \u2013 Hairy Solar Panels\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022hairy solar panels\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00225040241e-c5e8-4869-ba87-5359b4edfe6b\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/hairy%20panels%20newsletter%20FINAL.jpg\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EWhat are hairy solar panels?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EUsing arrays of long, thin silicon wires embedded in a polymer substrate, a team of scientists from the California Institute of Technology (Caltech) created a new type of flexible solar cell that enhances the absorption of sunlight and efficiently converts its photons into electrons. The solar cell does all this using only a fraction of the expensive semiconductor materials required by conventional solar cells.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EHow are these panels produced?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EHairy solar panels are produced with the help of nanotechnology by using light absorbing nanowires on carbon-nanotube fabrics. These nanowires have a cylindrical structure with a diameter of about a 10000\u003Csup\u003Eth\u003C/sup\u003E\u00A0of a human hair.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EThe anatomy of hairy solar panels\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EEach wire or \u2018hair\u2019 on a panel measures between 30 and 100 microns in length and only 1 micron in diameter. In terms of area or volume, just 2% of it is silicon, and 98% is polymer.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EWhile these arrays have the thickness of a conventional crystalline solar cell, their volume is equivalent to that of a two-micron-thick film. Or to put it in another way, there is a lot of empty space in there.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ESince the silicon material is an expensive component of a conventional solar cell, a cell that requires just one-fiftieth of the amount of this semiconductor will be much cheaper to produce.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022diagram 2\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022bd038c5e-1270-4445-95c5-75d3f7d3d647\u0022 height=\u0022268\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/solarwires-caltech-photo01.jpg\u0022 width=\u0022333\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003EPhotomicrograph of a silicon wire array embedded within a transparent, flexible polymer film.\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EHow efficient are hairy solar panels?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe light-trapping limit of a material refers to how much sunlight it is able to absorb. The silicon-wire arrays absorb up to 96 percent of incident sunlight at a single wavelength and 85 percent of total collectible sunlight. What\u2019s most important in a solar cell is whether that absorption leads to the creation of charge carriers.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe silicon wire arrays are able to convert between 90 and 100 percent of the photons they absorb into electrons. High absorption plus good conversion makes for a high-quality solar cell.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe key to the success of these solar cells is their silicon wires, each of which is independently a high-efficiency, high-quality solar cell. When brought together in an array, however, they\u2019re even more effective, because they interact to increase the cell\u2019s ability to absorb light.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ELight comes into each wire, and a portion is absorbed and another portion scatters. The collective scattering interactions between the wires make the array very absorbing.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022Diagram 4\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022c5ef223d-518a-4c8e-a49d-c4ba48528ba5\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Diagram.jpg\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003EThis is a schematic diagram of the light-trapping elements used to optimize absorption within a polymer-embedded silicon wire array.\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESpend less green to go green\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe composite nature of these hairy solar cells means that they are also flexible. Having these be complete flexible sheets of material is important as flexible thin films can be manufactured in a roll-to-roll process, an inherently lower-cost process than one that involves brittle wafers, like those used to make conventional solar cells.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhy hairy solar panels? \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EVisually striking, highly efficient at carrier collection and highly absorbing.\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003ESolar technology is indeed taking leaps and bounds.\u003C/p\u003E\n\u003Cp\u003EConsider solar for your business or facility. \u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cstrong\u003ECHAT\u003C/strong\u003E \u003C/a\u003Eto our experts now!\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://blog.thesietch.org/2010/02/23/hairy-solar-cells-cheap-efficient-potentially-revolutionary/\u0022\u003Ehttps://blog.thesietch.org/2010/02/23/hairy-solar-cells-cheap-efficient-potentially-revolutionary/\u003C/a\u003E\u003C/p\u003E\n", "created": "Sep 2021", "terms": "Solar, Education" }, { "title": "READ | Innovation in Solar Technology Pt 4", "nid": "541", "body": "\u003Cp class=\u0022text-align-justify\u0022\u003EFrom efficiency upgrades, advanced capabilities of solar equipment, to massive improvements in the storage of energy, there is so much that the field of solar power is moving towards in terms of innovations.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn this NEW series, we discuss a few of the most interesting topics in solar technology innovation. Be sure to stay tuned to catch all the instalments!\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-1\u0022\u003E\u003Cstrong\u003EPart 1 \u2013 Solar Glass\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-2\u0022\u003E\u003Cstrong\u003EPart 2 \u2013 Thin Film Solar Panels\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-3\u0022\u003E\u003Cstrong\u003EPart 3 \u2013 Perovskite Solar Panels\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003EPart 4 \u2013 Coloured Solar Panels\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022Coloured solar panels\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002273a638ae-4d4d-4c7a-ad26-1434d3899082\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/102490JA-L056.jpg\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ESolar panels have become increasingly efficient, but their look hasn\u0027t dramatically improved\u2026 until now. Coloured solar panels are an aesthetically appealing counterpart to the traditional black or blue panels. While these panels offer up to 8% efficiency compared to the 13-15% of typical silicon panels, their vivid appearance could encourage broader use, allowing increased adoption to spur improved performance.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EWhat are the typical colours for solar cells?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ESolar cells usually have a dark colour, specifically to reflect as little light as possible. In this way, the solar cell will therefore produce maximum power output.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EMonocrystalline solar cells\u00A0are typically blue, black or grey, while\u00A0polycrystalline solar cells\u00A0are usually blue or dark blue. The colour of\u00A0thin-film amorphous silicon cells\u00A0is always the same: it has a dark surface with grey, brown and black as common colours.\u00A0CIS Cells\u00A0and\u00A0CDTe Cells\u00A0are always dark brown or black. The colour of the solar cells can be changed by varying the thickness of the\u00A0anti-reflection coating.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat are coloured solar panels?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EColoured Solar Cells are solar cells that feature different colours than the standard dark grey and bluish colours of typical solar cells.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe coloured cells give a special look to the solar installation, however, by adjusting the thickness of the anti-reflection layer, the overall reflection will increase and the efficiency will decrease by 15-30%, depending on the colour.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EA designer\u2019s delight\u2026\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EStandard solar panels live on rooftops, need to tilt at a certain angle, and, most problematically, are an eyesore. People don\u2019t find them attractive, so it\u2019s hard for a building designer to integrate them in a way people will accept. The invention of coloured panels could lead to more businesses adopting the aesthetically appealing alternative, and by way, an increased adoption of renewable energy.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThese new panels may not be as efficient as standard solar panels, but the stained glass window pane look could be utilized well in public spaces, like colourful, energy-harvesting benches that double-up as charging stations in a park.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022coloured panels on a building\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022aed238b4-0da5-43b9-a260-cf949b9556a6\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/solar-panels-newsletter.jpg\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EStill a while to go\u2026\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThese coloured cells are currently manufactured in China and Taiwan, and due to the\u00A0rarity\u00A0of this product, it is not surprising\u00A0that their price is higher than that of regular solar cells. As this alternative to the standard panel still grows in popularity, it may be a while before we see these beautiful panels in our cities.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat\u2019s in our next instalment of Solar Innovations? \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EHairy solar panels\u2026 Curious? Be sure to look out for this interesting article as we wrap up our series on solar innovations.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHaven\u2019t considered solar for your business or facility yet? \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EWhat are you waiting for?\u003Cstrong\u003E \u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar%20Enquiry\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to our experts about a solar solution for your home, factory or office now!\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.architectmagazine.com/technology/products/colorful-solar-panels-that-double-as-sound-barriers_s\u0022\u003Ehttps://www.architectmagazine.com/technology/products/colorful-solar-panels-that-double-as-sound-barriers_s\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://sinovoltaics.com/learning-center/solar-cells/colored-solar-cells-specialities-and-limitations/\u0022\u003Ehttps://sinovoltaics.com/learning-center/solar-cells/colored-solar-cells-specialities-and-limitations/\u003C/a\u003E\u003C/p\u003E\n", "created": "Sep 2021", "terms": "Solar, Education" }, { "title": "READ | Innovation in Solar Technology Pt 3", "nid": "537", "body": "\u003Cp class=\u0022text-align-justify\u0022\u003EWhat are the latest advancements in the \u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-solar/index.php\u0022\u003E\u003Cstrong\u003Esolar industry\u003C/strong\u003E\u003C/a\u003E?\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EWe\u2019re answering this question in our NEW series as we discuss recent innovations and developments within solar technology. In this article, we introduce you to Perovskite Solar Panels. Be sure to stay tuned to catch all the instalments!\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-1\u0022\u003E\u003Cstrong\u003EPart 1 \u2013 Solar Glass\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.demo.ecatonline.co.za/websites/magnetgroup/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-2\u0022\u003E\u003Cstrong\u003EPart 2 \u2013 Thin Film Solar Panels\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003EPart 3 \u2013 Perovskite Solar Panels\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022Perovskite technology\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022f63b89f2-6c43-4d26-aaf2-57ac6f210d5f\u0022 height=\u0022289\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/perovskite-solar-cell-.jpg\u0022 width=\u0022511\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EUnderstanding perovskites\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA perovskite is a type of material that has the same crystal structure as the mineral, calcium titanium oxide, the first-discovered perovskite crystal. A large number of different elements can be combined to form perovskite structures. Using this compositional flexibility, scientists can design perovskite crystals to have exceptionally diverse optical, physical, and electrical characteristics. Today, perovskite crystals are found in ultrasound machines, memory chips, and now \u2013 solar cells.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EPerovskites in clean energy applications\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAll photovoltaic solar cells rely on semiconductors. These are materials in the middle ground between electrical insulators such as glass, and metallic conductors, such as copper. Semiconductors turn the energy from light into electricity. Light from the sun excites electrons in the semiconductor material, which flow into conducting electrodes and produce electric current.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ESince the 1950\u2019s, silicon has been the primary semiconductor material used in solar cells. This is because its semiconducting properties align well with the spectrum of the sun\u2019s rays, and it is relatively abundant and stable. However, the large silicon crystals used in conventional solar panels require an expensive, multi-step manufacturing process that utilizes a lot of energy.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn the search for an alternative, scientists have harnessed the tunability of perovskites to create semiconductors with similar properties to silicon. When used to create solar cells, perovskites have shown potential for high performance and low production costs. Moreover, perovskite solar cells can be manufactured using simple, additive deposition techniques, like printing, for a fraction of the cost and energy. Owing to the compositional flexibility of perovskites, they can also be tuned to ideally match the sun\u2019s spectrum.\u003C/p\u003E\n\u003Cp\u003EThe below illustration shows a cross-section of a perovskite solar cell.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022cross section of perovskite cell\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00222f62389d-60d5-4483-ba11-2900b147e410\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Cross%20section%20of%20Perovskite%20solar%20cell.JPG\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EDevelopments in perovskite solar cell technology\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn 2012, researchers first discovered how to make a stable, thin-film perovskite solar cell with light photon-to-electron conversion efficiencies over 10%, using lead halide perovskites as the light-absorbing layer. Since then, the sunlight-to-electrical-power conversion efficiency of perovskite solar cells has skyrocketed, with the laboratory record standing at 25.2%. Researchers are also combining perovskite solar cells with conventional silicon solar cells \u2013 record efficiencies for these \u201Cperovskite on silicon\u201D tandem cells are currently 29.1% (surpassing the record of 27% for conventional silicon cells) and rising rapidly. With this rapid surge in cell efficiency, perovskite solar cells and perovskite tandem solar cells may soon become cheap, highly efficient alternatives to conventional silicon solar cells.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EIn closing\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EPerovskite solar cells have shown remarkable progress in recent years with rapid increases in conversion efficiency, from reports of about 3% in 2006 to over 25% today. While perovskite solar cells have become highly efficient in a very short time, a number of challenges remain before they can truly become a competitive commercial technology.\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EResources\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E1.\u003Cstrong\u003E\u003Ca href=\u0022https://www.youtube.com/watch?v=5oZWLKSDVBk\u0022\u003E WATCH\u003C/a\u003E\u003C/strong\u003E a video on Perovskite Solar Panels\u003C/p\u003E\n\u003Cp\u003E2. \u003Cstrong\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar%20Enquiry\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to our solar experts about a clean energy solution for your home, factory or office\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.cei.washington.edu/education/science-of-solar/perovskite-solar-cell/\u0022\u003Ehttps://www.cei.washington.edu/education/science-of-solar/perovskite-solar-cell/\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.energy.gov/eere/solar/perovskite-solar-cells\u0022\u003Ehttps://www.energy.gov/eere/solar/perovskite-solar-cells\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n", "created": "Sep 2021", "terms": "Solar, Education" }, { "title": "READ | Innovation in Solar Technology Pt 2", "nid": "535", "body": "\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022Thin film solar panels\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002294afda83-65c3-414b-a4cb-bd00bcd6a874\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/TFSPs.jpg\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-solar/index.php\u0022\u003E\u003Cstrong\u003ESolar technology\u003C/strong\u003E\u003C/a\u003E is constantly evolving. Pioneers in the industry have contributed a great deal in innovation, advancing what we think we know about solar technology, into so much more!\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn this NEW series, we discuss a few of the most interesting topics in solar technology innovation. Be sure to stay tuned to catch all the instalments!\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=READ--Innovation-in-Solar-Technology-Pt-1\u0022\u003EPart 1 \u2013 Solar Glass\u003C/a\u003E\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EPart 2 \u2013 Thin Film Solar Panels\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E\u003Cem\u003EAmong the many innovations in the panel manufacturing space, none may be more appealing and visually exciting than thin-film solar panels\u003C/em\u003E.\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat is a thin-film solar panel?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThin-film solar panels are a relatively recent development in the solar panel industry.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EOwing to their narrow design and the efficient semi-conductor built into their cells, thin-film solar cells are the lightest PV cell you can find while still maintaining strong durability.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow are these type of solar cells actually made?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThese solar cells are created by placing the main material between thin sheets of conductive material with a layer of glass on top for protection. The most distinguishing feature of thin-film panels is that they aren\u2019t always made from silicon. They can be made from a variety of materials, including:\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E1. Cadmium telluride (CdTe)\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe most widely used thin-film technology, CdTe holds roughly 50% of the market share for thin-film solar panels. CdTe contains significant amounts of Cadmium \u2013 an element with relative toxicity \u2013 so this is a factor of consideration. First Solar is the top innovator and seller in this space.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E2. Amorphous silicon (a-Si)\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe second most popular thin-film option after CdTe, is a-Si. The a-Si panels also use silicon, but they use non-crystalline silicon and are also topped with glass. A-Si is the most similar technology to that of a standard silicon wafer panel. A-Si is a much better option than its counterparts (CdTe, CIGS) in terms of toxicity and durability, but it is less efficient and is typically used for small load requirements like consumer electronics. The quest for scale is always a hindrance for a-Si.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E3. Copper Indium Gallium Selenide (CIGS)\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ELaboratory CIGS cells have reached efficiency highs of 22.4%. However, these performance metrics are not yet possible at scale. The primary manufacturer of CIGS cells was Solyndra (which went bankrupt in 2011). Today, the leader is Solar Frontier. MiaSol\u00E9 also manufactures CIGS panels in the U.S. and China.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E4. Gallium Arsenide (GaAs)\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA very expensive technology, GaAs holds a world record 28.9% efficiency for all single-junction solar cells. GaAs is primarily used on spacecraft and is meant for versatile, mass-scale instalments of PV energy in unusual environments.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow can you tell if a panel is thin-film?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThin-film panels are obviously easy to identify by their thin appearance. These panels are approximately 350 times thinner than those that use silicon wafers. However, note that thin-film frames can be large sometimes, making the appearance of the entire solar system comparable to that of a monocrystalline or polycrystalline system. Thin-film cells can be black or blue, depending on the material they were made from.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar Enquiry\u0022\u003E\u003Cimg alt=\u0022thin film panels\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002230d8629a-9578-4a22-a866-263bb59be312\u0022 height=\u0022277\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Energy_2016_YesSolarEnergyTechnology1.jpg\u0022 width=\u0022443\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow does silicon compare to thin film?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ECrystalline silicon technology has been around for some time and has proven to be valuable. Thin film technology is still in its infancy, but it has the potential to achieve lower costs under the same efficiency and reliability.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E1. Crystalline silicon\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EAdvantages:\u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003EHigh conversion efficiency (reaching 12%-24.2%)\u003C/li\u003E\n\u003Cli\u003EHigh stability\u003C/li\u003E\n\u003Cli\u003EEasy manufacturing\u003C/li\u003E\n\u003Cli\u003EHigh reliability\u003C/li\u003E\n\u003Cli\u003EHeat resistance\u003C/li\u003E\n\u003Cli\u003ELow installation costs\u003C/li\u003E\n\u003Cli\u003EMore environmentally friendly, considering the time of disposal/recycling\u003C/li\u003E\n\u003Cli\u003EWell established track record (Crystalline silicon modules have been in production in the 1970s, and monocrystalline silicon panels can withstand harsh environments and can be used for space flight)\u2002\u2002\u2002\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp\u003E\u003Cstrong\u003EDisadvantages:\u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003EIn terms of initial cost, crystalline silicon is the most expensive solar module\u003C/li\u003E\n\u003Cli\u003EThe solar energy absorption factor is very low\u003C/li\u003E\n\u003Cli\u003EThe material is brittle and fragile\u2002 \u2002\u2002\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp\u003E\u003Cstrong\u003E2. Thin-film solar cells \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EAdvantages:\u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003ECheaper than old-fashioned crystalline silicon solar cells\u003C/li\u003E\n\u003Cli\u003ECan be prepared on thin silicon wafers\u003C/li\u003E\n\u003Cli\u003EMore flexible and easier to handle\u003C/li\u003E\n\u003Cli\u003ELess easily damaged by external shocks\u2002 \u2002\u2002\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp\u003E\u003Cstrong\u003EDisadvantages: \u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003EThin-film solar cell modules have a low efficiency, which can offset its price advantage in some applications.\u003C/li\u003E\n\u003Cli\u003EIts structure is also more complex\u003C/li\u003E\n\u003Cli\u003EFlexible thin-film batteries require special installation skills, so they cannot be used in aerospace at present\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EResources\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E1.\u003Cstrong\u003E\u003Ca href=\u0022https://www.youtube.com/watch?v=gBgS-FfF8Ew\u0022\u003E WATCH\u003C/a\u003E \u003C/strong\u003Ea video on Solar Panels\u003C/p\u003E\n\u003Cp\u003E2.\u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-solar/news.php?type=articles\u0026amp;name=LEARN--Understanding-Solar-Panels\u0022\u003E \u003Cstrong\u003ELEARN\u003C/strong\u003E\u003C/a\u003E more about Solar Panels\u003C/p\u003E\n\u003Cp\u003E3. \u003Cstrong\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Solar%20Enquiry\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to our solar experts about a clean energy solution for your home, factory or office\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESources:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://1stsunflower.com/The-difference-between-thin-film-and-crystalline-silicon-solar-panels-id3062492.html\u0022\u003Ehttps://1stsunflower.com/The-difference-between-thin-film-and-crystalline-silicon-solar-panels-id3062492.html\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.8msolar.com/types-of-solar-panels\u0022\u003Ehttps://www.8msolar.com/types-of-solar-panels\u003C/a\u003E\u003C/p\u003E\n", "created": "Sep 2021", "terms": "Solar, Education" } ]

LEARN | The Importance of Solar System Design pt 1

mechanical design
Did you know that the efficiency (energy yield) of a solar system is largely affected by the design of the system? The component choice will drive the behaviour of the module(s) and inverter(s). The orientation of the modules will drive the sun angles at each hour of the year, and therefore the total energy yield of the array. And the electrical design (module stringing, conductor sizes, etc.) will determine the system voltages, which impact wire losses and inverter efficiency. In our NEW series, we unpack the importance of solar system design, and what it involves. In part one, we look at Mec...
Read More >>

READ | Innovation in Solar Technology Pt 5

hairy solar panels
Solar technology is constantly evolving. Pioneers in the industry have contributed a great deal in innovation, advancing what we think we know about solar technology, into so much more! In this article, we introduce you to Hairy Solar Panels… Missed out on previous articles in the series? Catch up now… Part 1 – Solar Glass Part 2 – Thin Film Solar Panels Part 3 – Perovskite Solar Panels Part 4 – Coloured Solar Panels Part 5 – Hairy Solar Panels What are hairy solar panels? Using arrays of long, thin silicon wires embedded in a polymer substrate, a team of scientists from the California Instit...
Read More >>

READ | Innovation in Solar Technology Pt 4

Coloured solar panels
From efficiency upgrades, advanced capabilities of solar equipment, to massive improvements in the storage of energy, there is so much that the field of solar power is moving towards in terms of innovations. In this NEW series, we discuss a few of the most interesting topics in solar technology innovation. Be sure to stay tuned to catch all the instalments! Part 1 – Solar Glass Part 2 – Thin Film Solar Panels Part 3 – Perovskite Solar Panels Part 4 – Coloured Solar Panels Solar panels have become increasingly efficient, but their look hasn't dramatically improved… until now. Coloured solar pa...
Read More >>

READ | Innovation in Solar Technology Pt 3

Perovskite technology
What are the latest advancements in the solar industry? We’re answering this question in our NEW series as we discuss recent innovations and developments within solar technology. In this article, we introduce you to Perovskite Solar Panels. Be sure to stay tuned to catch all the instalments! Part 1 – Solar Glass Part 2 – Thin Film Solar Panels Part 3 – Perovskite Solar Panels Understanding perovskites A perovskite is a type of material that has the same crystal structure as the mineral, calcium titanium oxide, the first-discovered perovskite crystal. A large number of different elements can b...
Read More >>

READ | Innovation in Solar Technology Pt 2

Thin film solar panels
Solar technology is constantly evolving. Pioneers in the industry have contributed a great deal in innovation, advancing what we think we know about solar technology, into so much more! In this NEW series, we discuss a few of the most interesting topics in solar technology innovation. Be sure to stay tuned to catch all the instalments! Part 1 – Solar Glass Part 2 – Thin Film Solar Panels Among the many innovations in the panel manufacturing space, none may be more appealing and visually exciting than thin-film solar panels. What is a thin-film solar panel? Thin-film solar panels are a relativ...
Read More >>

X

Stay informed! Subscribe and receive our weekly newsletter on the latest industry trends, technology and tools of the trade.

SUBSCRIBE
X

Stay informed! Subscribe and receive our weekly newsletter on the latest industry trends, technology and tools of the trade.

SUBSCRIBE
Message us