HTTP_CONNECTION:Keep-Alive
HTTP_ACCEPT:text/html,image/png,image/jpeg,image/pjpeg,image/x-xbitmap,image/svg+xml,image/gif;q=0.9,*/*;q=0.1
HTTP_ACCEPT_ENCODING:gzip, identity;q=0.9
HTTP_ACCEPT_LANGUAGE:en, *
HTTP_HOST:api.dev.ecatonline.co.za
HTTP_MAX_FORWARDS:10
HTTP_REFERER:http://www.magnet.co.za/solutions-electrical/education.html
HTTP_USER_AGENT:Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
HTTP_X_FORWARDED_HOST:www.magnet.co.za
HTTP_X_LOOKLIKE_URL:/solutions-electrical/news.html
HTTP_X_ORIGINAL_URL:/solutions-electrical/education.html?page=4
HTTP_X_FORWARDED_FOR:169.0.58.185:54185
HTTP_X_ARR_SSL:3072|256|C=US, O=Let's Encrypt, CN=R3|CN=magnet.co.za
HTTP_X_ARR_LOG_ID:511770f7-dec2-4452-8aa5-c7b82291a575
[
{
"title": "READ | Drives are everywhere",
"nid": "598",
"body": "\u003Cp\u003EOur friends at\u003Cstrong\u003E \u003Ca href=\u0022https://www.magnet.co.za/solutions-electrical/index.php\u0022\u003ESIEMENS\u003C/a\u003E \u003C/strong\u003Eremind us that drives are literally everywhere. You don\u00B4t always see them, but they are an important part of machines, of production facilities or of baggage handling systems in airports...\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022bags 1\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022a3ecc5f6-6289-4912-94e5-845bf3516130\u0022 height=\u0022253\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/1.JPG\u0022 width=\u0022386\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EData for Digitalization\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EDigitalization needs data. Information is considered the fuel of digitalization. To get more flexibility, more efficiency and ultimately more productivity out of machines, production facilities and even airports, you need to know what they are doing. You need to know about the properties, the status and the behaviour of your machines. And one easy way to get this information is \u2013 you guessed it \u2013 the drive train.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EDrives are everywhere\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EIt doesn\u00B4t really matter if you are producing cars or toothpaste or if you are transporting luggage. If you use a machine, there is some kind of drive inside.\u00A0Digitalization of the drive train\u00A0is connected closely to digitalization of your machines and your factories. However, since drives can generate a lot of data, drive technology represents an ideal entry into digitalization.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EFrom design through commissioning up to servicing machines\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EStarting with design, planning and engineering, digitalization of the drive train helps machine builders to shorten the time-to-market of a machine. With a digital twin, a virtual representation of the drive train, they can simulate many possible scenarios and find out where problems or bottlenecks could arise. Through virtual commissioning based on behaviour models, and supported by our engineering and commissioning tools, machine builders can shorten the commissioning time in the real world. And the data acquired during production can be captured and analysed on\u00A0industrial cloud-platforms.\u003C/p\u003E\n\u003Cp\u003EThrough drive-based digitalization machine users can get fundamental data about the machine status and its performance, and optimize their production accordingly. And it brings service one step closer to the factory \u2013 through consultation and implementation of digitalization solutions,\u00A0predictive services\u00A0and remote support.\u003C/p\u003E\n\u003Cp\u003EWith the help of a digital twin you can optimize your production \u2013 or the baggage handling system of an airport. And through predictive maintenance you can even predict, when a conveyor is going to fail.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EDigitalization in drive technology at the airport\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EAn\u00A0airport\u00A0is a very good example of how digitalization can be used to increase your productivity and the happiness of your customers. First of all: depending on the size of the airport, a baggage handling system can be quite complex. With the help of a digital twin you can optimize your strategy and minimize the bottlenecks during the engineering phase. Once you set up the handling system you can get a full and transparent overview of your system through the data from your drives and optimally use its capacity. And on top of this, with the right kind of analytics you can even predict when a conveyor in a baggage handling system is going to fail \u2013 before it happens\u2026\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022bags 2\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022fce208d7-df0c-48a1-8f0f-8b08ed511583\u0022 height=\u0022250\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/2_0.JPG\u0022 width=\u0022377\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EResources: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E1. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/news.php?type=articles\u0026amp;name=DISCOVER--Siemens-range-of-SINAMICS-S120-Drives\u0022\u003EDISCOVER\u003C/a\u003E\u003C/strong\u003E the Siemens range of SINAMICS drives\u003C/p\u003E\n\u003Cp\u003E2. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to us for a Siemens solution for your facility\u003C/p\u003E\n\u003Cp\u003E3. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003ESUBSCRIBE\u003C/a\u003E\u003C/strong\u003E to receive these informative articles, straight to your inbox\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://ingenuity.siemens.com/2019/11/drives-are-everywhere/\u0022\u003Ehttps://ingenuity.siemens.com/2019/11/drives-are-everywhere/\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n",
"created": "Jan 2022",
"terms": "Electrical, Education, Siemens"
},
{
"title": "READ | Industry 4.0: The factory of the future becomes the factory of today",
"nid": "595",
"body": "\u003Cp\u003E\u003Cimg alt=\u0022Industry 4.0 eaton\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002282caa765-68c6-4af9-80da-4ad13506e9f4\u0022 height=\u0022232\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Capture%202.jpg\u0022 width=\u00221165\u0022 class=\u0022align-center\u0022 /\u003E\u003C/p\u003E\n\u003Cp\u003EOur friends at \u003Cstrong\u003E\u003Ca href=\u0022https://shop.magnet.co.za/\u0022\u003EEATON\u003C/a\u003E\u003C/strong\u003E have recognised that we\u0027re in the midst of a significant transformation - the digital transformation of manufacturing. Here\u2019s how they intend working towards a future that\u2019s connected, data-driven and smart...\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EThe 4th industrial revolution\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EIndustry 4.0, is the automation of traditional manufacturing practices using digital technologies like the Internet of Things (IoT), robotics, additive manufacturing, factory simulation and augmented and virtual reality. Manufacturing models are becoming autonomous and using algorithms and machine learning to become \u201Csmart.\u201D\u00A0\u003C/p\u003E\n\u003Cp\u003EBy leveraging Industry 4.0 technology, we\u2019re significantly improving our manufacturing operations and adding value for our customers\u2014 creating and developing systems and processes that are connected, flexible and optimized. Innovative, scalable and data-driven manufacturing models are resulting in higher product quality, decreased time-to-market, reduced environmental footprint and a safer and more productive workforce.\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EThe power of data \u2013 turning insights into intelligence\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EThere\u2019s no question data is critical to enabling intelligent factories. But knowing how to process, use and learn from that data is what leads to success. Enabled through IoT and connected devices, real-time data collections are growing by the minute. The key to success lies in the ability to take the data, quickly and seamlessly get it to the right people and use it to make intelligent decisions. By leveraging artificial intelligence (AI), we can provide data-driven insights that help drive major operational improvements -\u00A0saving time and costs throughout the manufacturing process.\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ECreating better work experiences through functional productivity\u00A0\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EFrom field service and shop floor employees, to knowledge workers and managers, Industry 4.0 is fundamentally reimagining and transforming the way we work. Industry 4.0 technology is allowing our employees to push the paperwork aside and focus time and energy on higher value-add areas. We\u2019re enabling functional productivity by focusing on three areas:\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\n\u003Cstrong\u003E1. Process optimization\u003C/strong\u003E\u00A0- Examining process inputs/outputs, leaning out processes and investigating different ways of accomplishing tasks through design thinking and analytics.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E2. End-to-end automation\u003C/strong\u003E\u00A0- Processing data efficiently with AI, enabling next generation machine-learning and robotics.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E3. Digital tool adoption\u003C/strong\u003E\u00A0- Change management, employee resourcing, skills, training and adoption.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EIndustry 4.0 technologies\u00A0\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EWe\u0027re leveraging Industry 4.0 technologies on our factory floor and beyond...\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EAdditive manufacturing\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EAdditive manufacturing, or 3D printing, allows us to create new products faster than traditional manufacturing. By adopting and advancing our 3D printing practices, we\u2019re able to meet higher demand and improve speed to market on new products and models\u2014 all while advancing sustainable manufacturing practices and reducing CO2 emissions.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EAugmented reality\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EWhether it\u2019s connecting our teams virtually, providing remote support and training to customers or using digital twins for product development, leveraging augmented and virtual reality in our facilities is fast becoming our new normal. We\u2019re reducing our environmental footprint by eliminating unnecessary travel, allowing a more productive workforce through faster training and troubleshooting and lowering operating costs by improving our product development processes.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://shop.magnet.co.za/\u0022\u003E\u003Cimg alt=\u0022augmented reality\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022188ee7a7-840d-4aaa-a442-38b59fa5b1f4\u0022 height=\u0022195\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/augmented%20reality.jpg\u0022 width=\u0022303\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EFactory simulation\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EBy digitally simulating a manufacturing line or cell, we can determine the best combination of resources to reach the desired result in the safest and most efficient way. By allocating machines and manpower more effectively, we\u2019re keeping our employees safe and increasing speed-to-market.\u00A0\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ERobotics\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EFrom automated machines and cobots (collaborative robots) on the production line to automated guided vehicles (AGVs)/autonomous mobile robots (AMRs) traversing throughout our facilities, we\u2019re leveraging robots alongside humans to keep our employees safer and improve quality and productivity.\u00A0\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://shop.magnet.co.za/\u0022\u003E\u003Cimg alt=\u0022factory 4.0\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00225e2192e2-2066-4e6d-b1b8-07d58ffe2471\u0022 height=\u0022272\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/newsletter%20image_0.jpg\u0022 width=\u0022415\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EConnected solutions\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EBy utilizing connected and intelligent solutions that enable automatic, real-time data collection on our production lines, we\u0027re improving overall equipment effectiveness (OEE) and realizing the benefits of predictive maintenance. Statistical process control (SPC) methods and digital end-to-end traceability are allowing us to increase efficiency and quality while reducing waste. And digital work instructions are increasing workforce productivity and leading to faster process development and more flexible work processes.\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EResources:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E1. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to us for an Eaton solution for your facility\u003C/p\u003E\n\u003Cp\u003E2. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/solutions-electrical/news.php?type=articles\u0026amp;name=READ--Are-you-ready-for-Industry-40\u0022\u003ELEARN\u003C/a\u003E\u003C/strong\u003E more about Industry 4.0\u003C/p\u003E\n\u003Cp\u003E3. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003ESUBSCRIBE\u003C/a\u003E\u003C/strong\u003E to receive these informative articles, straight to your inbox\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.eaton.com/us/en-us/digital/industry-4-0.html\u0022\u003Ehttps://www.eaton.com/us/en-us/digital/industry-4-0.html\u003C/a\u003E\u003C/p\u003E\n",
"created": "Jan 2022",
"terms": "Electrical, Education, Eaton"
},
{
"title": "LEARN | Understanding Protective Relays - Part 2",
"nid": "591",
"body": "\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022factory 7\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00225296461e-d140-4a0c-bee1-4bb92553ef8f\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/istockphoto-1296681861-612x612.jpg\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003EIn \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/news.php?type=articles\u0026amp;name=LEARN--Understanding-Protective-Relays---Part-1\u0022\u003EPart 1\u003C/a\u003E\u003C/strong\u003E of this NEW series, we unpacked the definition of a protective relay, the five functional categories of relays, and then ended off by touching on the classification of relays.\u003C/p\u003E\n\u003Cp\u003EWe wrap up the series by discussing the types of protective relays, and then move on to transformers, protection zones and end off with the applications of a relay\u2026\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat types of protective relays are used?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EDigital protective relays\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EThe digital protective relay or numeric relay is a protective relay that uses a microprocessor to analyze power system voltages, currents or other process quantities for detection of faults in an industrial process system.\u003C/p\u003E\n\u003Cp\u003EA digital protective relay\u2019s operating principle ranges from simple to complex. Generally, the digital protective relay manages several protective functions or performance characteristics as well as having the ability of communications, monitoring, recording and programmable logic afforded by microprocessor technology.\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EElectro-mechanical relays\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EElectro-mechanical protective relays are the earliest forms of protective relays and operating using electro-magnetic forces and physical range from simple to complex, but generally, they manage only one or two protective functions or performance characteristic.\u003C/p\u003E\n\u003Cp\u003EElectro-mechanical protective relays have been used since the beginning of the electrical power grid and are still in large use today.\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EInstrument transformers\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EProtective relays generally do not directly measure the input quantities (current or voltage) they are trying to protect for abnormal conditions. Rather, they require instrument transformers that isolate the relay from the dangerous high voltage and current levels of the power delivery system.\u00A0\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003E\u003Cstrong\u003ECurrent transformers (CT)\u003C/strong\u003E\u003Cbr /\u003E\n\tUsed to measure current in AC circuits. A current transformer reduces the high current level proportionally to a range of 0 to 5 amps.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EPotential transformers (PT) or voltage transformers (VT)\u003C/strong\u003E\u003Cbr /\u003E\n\tUsed to measure voltage (potential difference) in AC circuits. A potential or voltage transformer reduces the high voltage level proportionally to a range of 0 to 120 volts.\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EZones of protection\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EProtective relays are designed to protect zones of the power system.\u00A0When applying protective relaying, the power system is divided into sections so that the protective relays provide \u201Czones of protection.\u201D\u003C/p\u003E\n\u003Cp\u003ESometimes it is common for zones of protection to overlap so that multiple layers of protection are afforded to each piece of equipment. This points to the idea of primary and secondary (backup) protection.\u003C/p\u003E\n\u003Cp\u003EOverlapping and backup protection is implemented to avoid the possibility of unprotected areas, especially for critical equipment. This is accomplished by the strategic placement of the instrument transformers (current transformers or potential transformers). Otherwise, simple redundancy of the protective relay scheme provides backup protection.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EThe zones can be defined as:\u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003EGenerators\u003C/li\u003E\n\u003Cli\u003ETransformers\u003C/li\u003E\n\u003Cli\u003EBuses and distribution feeders\u003C/li\u003E\n\u003Cli\u003ETransmission lines\u003C/li\u003E\n\u003Cli\u003EMotors\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022Zones of protection\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00226dfc837f-05b8-413a-965c-01fe5274a34e\u0022 height=\u0022447\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Zones%20of%20Protection.jpg\u0022 width=\u0022602\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EApplications of a relay\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EWherever electricity is used, there is a high probability relays are involved. Simple relays and limit switches are found in many commercial and residential areas including heating, ventilation and air conditioning (HVAC) systems, stoves, elevators, telephone networks, traffic controls, robotics and many other applications.\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022applications of a relay\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002269e43360-de63-40f4-916c-d9aebc6195ca\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Applications%20of%20relays.JPG\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EResources: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E1.\u003Cstrong\u003E \u003Ca href=\u0022https://www.youtube.com/watch?v=eRXloNOc53s\u0022\u003EWATCH\u003C/a\u003E \u003C/strong\u003Ean educational video on Current Transformers\u003C/p\u003E\n\u003Cp\u003E2. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/solutions-electrical/news.php?type=articles\u0026amp;name=DISCOVER--Eaton039s-range-of-Protective-Relays\u0022\u003EDISCOVER\u003C/a\u003E \u003C/strong\u003EEaton\u2019s range of Protective Relays\u003C/p\u003E\n\u003Cp\u003E3. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to us for an Eaton solution for your facility\u003C/p\u003E\n\u003Cp\u003E4. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003ESUBSCRIBE\u003C/a\u003E\u003C/strong\u003E to receive these informative videos straight to your inbox\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.eaton.com/us/en-us/products/electrical-circuit-protection/protective-relays-and-predictive-devices.html\u0022\u003Ehttps://www.eaton.com/us/en-us/products/electrical-circuit-protection/protective-relays-and-predictive-devices.html\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n",
"created": "Jan 2022",
"terms": "Electrical, Education, Eaton"
},
{
"title": "LEARN | Understanding Protective Relays - Part 1",
"nid": "590",
"body": "\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022factory 5\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022b5320618-f230-4cb3-889d-3c16e8b1f616\u0022 height=\u0022234\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/newsletter_0.jpg\u0022 width=\u0022710\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003EIn our NEW series, we unpack protective relays. We start the series off with an introduction to protective relays, and then touch on relay categories and classifications.\u003C/p\u003E\n\u003Cp\u003EKeep an eye out for the second instalment of the series\u2026\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat is electrical circuit protection?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EElectrical circuit protection is the purposeful use of a fail-safe device that automatically causes a disruption in an electrical circuit when it recognizes an excess and unsafe load of power in a circuit. Common circuit protection devices and components include circuit breakers, fuses, surge protection and protective relays.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat is a protective relay?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EThe Institute of Electrical and Electronic Engineers (IEEE) supplies the following\u003Cstrong\u003E\u00A0definition of a protective relay\u003C/strong\u003E:\u003C/p\u003E\n\u003Cp\u003EA relay whose function is to detect defective lines or apparatus or other power system conditions of an abnormal or dangerous nature and to initiate appropriate control circuit action.\u00A0\u00A0\u003Cbr /\u003E\n(IEEE C37.100-1992)\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EProtective relays: An expanded definition \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EAn electric device that is designed to respond to input conditions in a prescribed manner and, after specified conditions are met, to cause contact operation or similar abrupt change in associated\u00A0electric control circuits.\u00A0\u003C/p\u003E\n\u003Cp\u003EA relay may consist of several relay units, each responsive to a specified input, with the combination of units providing the desired overall performance characteristic of the relay.\u00A0Inputs are usually electric but may be mechanical, thermal or other quantities or a combination of quantities. Limit switches and similar devices are not [protective] relays.\u003Cbr /\u003E\n(IEEE C37.100-1992 and C37.90-2005)\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ERelay Categories\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003ERelays can be divided into five functional categories:\u003C/p\u003E\n\u003Col\u003E\n\u003Cli\u003E\u003Cstrong\u003EProtective relays\u003C/strong\u003E\u003Cbr /\u003E\n\tProtective relays are one of the critical components of the electrical power grid that serve to detect defective equipment or other dangerous or intolerable conditions and can either initiate or permit switching or simply provide an alarm to provide a safer, more reliable delivery system.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EMonitoring relays\u003C/strong\u003E\u003Cbr /\u003E\n\tVerify conditions on the power system or in the protection system.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EProgramming relays\u003C/strong\u003E\u003Cbr /\u003E\n\tEstablish or detect electrical sequences.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003ERegulating relays\u003C/strong\u003E\u003Cbr /\u003E\n\tActivate when an operating parameter deviated from predetermined limits.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EAuxiliary relays\u003C/strong\u003E\u003Cbr /\u003E\n\tOperating in response to the opening or closing of the operating circuit to supplement another relay or device. These include timers, sealing units, lock-out relays, closing relays, trip relays, etc.\u003C/li\u003E\n\u003C/ol\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022factory 6\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002242b72e16-e10e-4a7a-bccb-ec422bcc47ac\u0022 height=\u0022191\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/image_0.jpg\u0022 width=\u0022286\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow are relays classified?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EIn addition to the functional categories, relays may be classified by input, operating principle or structure and performance characteristics:\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003E\u003Cstrong\u003EInput characteristics:\u003C/strong\u003E\u003Cbr /\u003E\n\tCurrent\u003Cbr /\u003E\n\tVoltage\u003Cbr /\u003E\n\tPower\u003Cbr /\u003E\n\tFrequency\u003Cbr /\u003E\n\tPressure\u003Cbr /\u003E\n\tTemperature\u003Cbr /\u003E\n\tFlow\u003Cbr /\u003E\n\tVibration\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EOperating principle or structure characteristics:\u003C/strong\u003E\u003Cbr /\u003E\n\tPercentage\u003Cbr /\u003E\n\tMulti-restraint\u003Cbr /\u003E\n\tProduct\u003Cbr /\u003E\n\tSolid state\u003Cbr /\u003E\n\tElectro-mechanical\u003Cbr /\u003E\n\tThermal\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EPerformance characteristics:\u003C/strong\u003E\u003Cbr /\u003E\n\tInverse and definite time overcurrent\u003Cbr /\u003E\n\tDirectional overcurrent\u003Cbr /\u003E\n\tDistance\u003Cbr /\u003E\n\tUnder-voltage or over-voltage\u003Cbr /\u003E\n\tGround or phase\u003Cbr /\u003E\n\tHigh or slow speed\u003Cbr /\u003E\n\tPhase comparison\u003Cbr /\u003E\n\tDirectional comparison\u003Cbr /\u003E\n\tSegregated phase\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EKeep an eye out for the second instalment of the series, where we discuss the types of protective relays, and then move on to transformers, protection zones and end off with the applications of a relay\u2026\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EResources: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E1.\u003Cstrong\u003E \u003Ca href=\u0022https://www.magnet.co.za/solutions-electrical/news.php?type=articles\u0026amp;name=DISCOVER--Eaton039s-range-of-Protective-Relays\u0022\u003EDISCOVER\u003C/a\u003E \u003C/strong\u003EEaton\u2019s range of Protective Relays\u003C/p\u003E\n\u003Cp\u003E2.\u003Cstrong\u003E \u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003ECHAT\u003C/a\u003E \u003C/strong\u003Eto us for an Eaton solution for your facility\u003C/p\u003E\n\u003Cp\u003E3.\u003Cstrong\u003E \u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003ESUBSCRIBE\u003C/a\u003E \u003C/strong\u003Eto receive these informative videos straight to your inbox\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003E\u003Ca href=\u0022https://www.eaton.com/us/en-us/products/electrical-circuit-protection/protective-relays-and-predictive-devices.html\u0022\u003Ehttps://www.eaton.com/us/en-us/products/electrical-circuit-protection/protective-relays-and-predictive-devices.html\u003C/a\u003E\u003C/strong\u003E\u003C/p\u003E\n",
"created": "Jan 2022",
"terms": "Electrical, Education, Eaton"
},
{
"title": "LEARN | Changes in Energy Technology ",
"nid": "589",
"body": "\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003E\u003Cimg alt=\u0022Fig 1\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022866e19b0-4d76-4299-b2ef-69fc6bd674e7\u0022 height=\u0022281\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/quorum-software-aucerna-merge-make-oil-gas-acquisition-1024x440.jpeg.optimal.jpeg\u0022 width=\u0022655\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003EIn this article, created by our friends at \u003Cstrong\u003Ea-eberle\u003C/strong\u003E, we discuss current changes in energy technology, the effects of grid repercussions, and what influence they have on measuring devices with which we detect faults in the grid.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EIncreasing energy efficiency and reducing costs \u2013 not possible without changes\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EIndustries are abandoning old technology for power-controlled technology (Figure 1). A good example is the change from an asynchronous motor to a frequency converter with a controlled drive. The asynchronous motor had two states: on and off. The frequency converter, on the other hand, can be set to the exact power required. This modern technology brings a mains feedback to our grid - they no longer need the voltage and current to be sinusoidal, but instead, build up the power and current as they would like it via a rectifier in the input.\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003E\u003Cimg alt=\u0022Figure 1:Changes of the electronic components\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022b07b8809-8527-4b0b-8fb8-cc1345d74e3e\u0022 height=\u0022314\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/11.png\u0022 width=\u0022748\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003EFigure 1: Changes of the electronic components\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow is a rectifier constructed?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EA typical input circuit of a drive can be seen in Figure 2. At the top, the mains side is shown, it is fed in three-phase and it goes via a bridge rectifier to an intermediate circuit, where this wavy DC is first smoothed out a little. Then we go to an inverter, where the DC is chopped up into small blocks and from this, we can assemble any frequency with which the motor can be regulated or controlled. This is very efficient, but on the grid side we get the switching frequencies of the inverter. Figure 1 shows a few examples of consumers that are used in today\u2019s grids. From the figure, it can be deduced that feedback effects of 2 kHz to 300 kHz must be expected, which can be a disturbance for other loads.\u003C/p\u003E\n\u003Cp\u003EIf a consumer operates with a certain switching frequency, the source feeds this frequency into the grid. Now this frequency naturally seeks out some consumer and wants to short-circuit itself. At 10 kHz or 20 kHz, we can assume that it does not want to flow towards the transformer or medium voltage, because the transformer blocks high frequencies via its XL. However, when we feed in, we look for a source with a low impedance through which this frequency can flow away, and this is usually always a consumer in the vicinity.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022Figure 2:Sctrure of the Inverter \u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022116c6e29-f8ca-4854-84c8-658458dc234b\u0022 height=\u0022215\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/12.png\u0022 width=\u002276\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0 \u00A0 \u00A0 \u00A0 Figure 2 :Structure of the Inverter\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat problems might occur in the grid if these switching frequencies occur?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EMany consumers nowadays no longer have a switch. In the past, for example, a lamp could be switched on and off via a switch, but nowadays it is also possible to use a touch dimmer lamp. By touching the base, the light is switched on and off.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EThere is a practical example of how these lamps influence the power quality:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EA hotel has equipped all rooms with touch dimmer lamps. These lamps switched themselves on and off, which is particularly unfavourable. The cause of all this: In the town where this hotel was located, an industrial company with CNC machines, which also worked during the night on weekdays, caused repercussions in the network. This ultimately caused the lamps to switch themselves on and off. In the lamp, the switching on and off mechanism is controlled by very small signals of a higher frequency. If the identical frequency is generated by another consumer or machine in the grid, a reaction or malfunction might occur.\u003C/p\u003E\n\u003Cp\u003EIn addition, it can be said that all feedback effects that occur in the range up to approx. 16 kHz can be perceived acoustically by humans, since consumers can convert these feedback effects into sounds.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow can disturbances be measured?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EIf you want to record the disturbances in the network, the whole thing is subject to the condition that the measuring device must be able to scan twice as fast as the disturbance that is to be recorded. For example, a disturbance in the range up to 10 kHz can only be detected by a measuring device that measures with at least 20 kHz. A brief overview of the sampling rates at which our mobile PQ measuring devices can measure and detect repercussions are displayed in Figure 3.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003E\u003Cimg alt=\u0022Figure 3\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022cdc3883a-e3f6-4a25-a1f7-226c6e548494\u0022 height=\u0022358\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/14.png\u0022 width=\u0022800\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003EFigure 3:Range\u00A0of interference detection of our PQ-Boxes and the corresponding guidelines\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EAn example from practice\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EIn one village, some customers complained to the energy supplier that some consumers were showing malfunctions or that devices were emitting whistling sounds. In this network, a measurement was carried out with a PQ-Box 100 (sampling rate 10 kHz) which is displayed in Figure 4. The measurement displays a perfect sine wave. There is no sign of interference at this point.\u003C/p\u003E\n\u003Cp\u003EUsing another device with a slightly higher sampling rate of 40 kHz (see Figure 5), we can see that a high frequency is modulated onto the sine.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003E\u003Cimg alt=\u0022Figure 4\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002250b4c7af-a4f5-4a0d-b12e-ab192ac5d06b\u0022 height=\u0022445\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/15.png\u0022 width=\u0022761\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003EFigure 4 :The Measurement displays a perfect sine wave\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp\u003EThe aim must now be to detect this frequency and to find the cause of this frequency by answering the following questions:\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli\u003EWhat frequency is it?\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cul\u003E\n\u003Cli\u003EWhat is the level of this frequency?\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp\u003EThe detection of the frequency in question is necessary because, depending on the impedance of the end user, it can lead to heating and also to malfunctions.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EResources:\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E1. \u003Ca href=\u0022https://www.youtube.com/watch?v=qtNyS9cclzY\u0026amp;list=PL0AHvVniUcgyZI6F0LyOS40iWJ3wJ70s2\u0026amp;index=2\u0022\u003E\u003Cstrong\u003EWATCH\u003C/strong\u003E\u003C/a\u003E an informative video on a-eberle\u2019s PQ-Box 150\u003C/p\u003E\n\u003Cp\u003E2. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to us for an a-eberle solution for your facility\u003C/p\u003E\n\u003Cp\u003E3. \u003Cstrong\u003E\u003Ca href=\u0022https://www.magnet.co.za/news-letter.html\u0022\u003ESUBSCRIBE\u003C/a\u003E\u003C/strong\u003E to receive these informative articles straight to your inbox\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003ESource: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003Ehttps://www.a-eberle.de/applikationsberichte/changes-in-energy-technology-part-1/?lang=en\u003C/p\u003E\n\u003Cdiv\u003E\u00A0\u003C/div\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n",
"created": "Jan 2022",
"terms": "A-eberle, Electrical, Education"
}
]
Our friends at SIEMENS remind us that drives are literally everywhere. You don´t always see them, but they are an important part of machines, of production facilities or of baggage handling systems in airports...
Data for Digitalization
Digitalization needs data. Information is considered the fuel of digitalization. To get more flexibility, more efficiency and ultimately more productivity out of machines, production facilities and even airports, you need to know what they are doing. You need to know about the properties, the status and the behaviour of your machines. And one easy way to get t...
Our friends at EATON have recognised that we're in the midst of a significant transformation - the digital transformation of manufacturing. Here’s how they intend working towards a future that’s connected, data-driven and smart...
The 4th industrial revolution
Industry 4.0, is the automation of traditional manufacturing practices using digital technologies like the Internet of Things (IoT), robotics, additive manufacturing, factory simulation and augmented and virtual reality. Manufacturing models are becoming autonomous and using algorithms and machine learning to become “smart.”
By leverag...
In Part 1 of this NEW series, we unpacked the definition of a protective relay, the five functional categories of relays, and then ended off by touching on the classification of relays.
We wrap up the series by discussing the types of protective relays, and then move on to transformers, protection zones and end off with the applications of a relay…
What types of protective relays are used?
Digital protective relays
The digital protective relay or numeric relay is a protective relay that uses a microprocessor to analyze power system voltages, currents or other process quantities for detection ...
In our NEW series, we unpack protective relays. We start the series off with an introduction to protective relays, and then touch on relay categories and classifications.
Keep an eye out for the second instalment of the series…
What is electrical circuit protection?
Electrical circuit protection is the purposeful use of a fail-safe device that automatically causes a disruption in an electrical circuit when it recognizes an excess and unsafe load of power in a circuit. Common circuit protection devices and components include circuit breakers, fuses, surge protection and protective relays.
What...
In this article, created by our friends at a-eberle, we discuss current changes in energy technology, the effects of grid repercussions, and what influence they have on measuring devices with which we detect faults in the grid.
Increasing energy efficiency and reducing costs – not possible without changes
Industries are abandoning old technology for power-controlled technology (Figure 1). A good example is the change from an asynchronous motor to a frequency converter with a controlled drive. The asynchronous motor had two states: on and off. The frequency converter, on the other hand, can be...