HTTP_CONNECTION:Keep-Alive
HTTP_ACCEPT:text/html,image/png,image/jpeg,image/pjpeg,image/x-xbitmap,image/svg+xml,image/gif;q=0.9,*/*;q=0.1
HTTP_ACCEPT_ENCODING:gzip, identity;q=0.9
HTTP_ACCEPT_LANGUAGE:en, *
HTTP_HOST:api.dev.ecatonline.co.za
HTTP_MAX_FORWARDS:10
HTTP_REFERER:http://www.magnet.co.za/solutions-electrical/education.html
HTTP_USER_AGENT:Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
HTTP_X_FORWARDED_HOST:www.magnet.co.za
HTTP_X_LOOKLIKE_URL:/solutions-electrical/news.html
HTTP_X_ORIGINAL_URL:/solutions-electrical/education.html?page=7
HTTP_X_FORWARDED_FOR:169.0.58.185:54197
HTTP_X_ARR_SSL:3072|256|C=US, O=Let's Encrypt, CN=R3|CN=magnet.co.za
HTTP_X_ARR_LOG_ID:8162154e-6392-424a-ae51-605759e5dd23
[
{
"title": "READ | 10 Dumb things people do when testing Electricity",
"nid": "546",
"body": "\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Fluke Enquiry\u0022\u003E\u003Cimg alt=\u0022Fluke multimeters\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00220ef4aa6d-7fd6-4b10-98a8-ce76c6ed0319\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Fluke%20multimeters.jpg\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003EAnyone who makes their living by working with electricity quickly develops a healthy respect for anything with even a remote chance of being \u0022live.\u0022 Yet, the pressures of the getting a job done on time or getting a mission-critical piece of equipment back on line can result in carelessness and uncharacteristic mistakes by even the most seasoned electrician\u2026\u003C/p\u003E\n\u003Cp\u003EThe list below was developed by FLUKE as a quick reminder of what \u003Cem\u003Enot\u003C/em\u003E to do when taking electrical measurements:\u003C/p\u003E\n\u003Col\u003E\n\u003Cli\u003E\u003Cstrong\u003EReplace the original fuse with a cheaper one\u003C/strong\u003E. If your digital multimeter meets today\u0027s safety standards, that fuse is a special safety sand fuse designed to pop before an overload hits your hand. When you change your meter fuse, be sure to replace it with an\u00A0\u003Ca href=\u0022https://www.fluke.com/en/products/accessories\u0022\u003Eauthorized fuse\u003C/a\u003E.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EUse a bit of wire or metal to get around the fuse all together\u003C/strong\u003E. That may seem like a quick fix if you\u0027re caught without an extra fuse, but that fuse could be all that ends up between you and a spike headed your way.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EUse the wrong test tool for the job\u003C/strong\u003E. It\u0027s important to match your\u00A0\u003Ca href=\u0022https://www.fluke.com/en/products/electrical-testing/digital-multimeters\u0022\u003Edigital multimeter\u003C/a\u003E\u00A0to the work ahead. Make sure your test tool holds the correct CAT rating for each job you do, even if it means switching DMMs throughout the day.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EGrab the cheapest meter on the rack\u003C/strong\u003E. You can upgrade later, right? Maybe not, if you end up a victim of a safety accident because that cheap test tool didn\u0027t actually contain the safety features it advertised. Look for independent laboratory testing.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003ELeave your safety glasses in your shirt pocket\u003C/strong\u003E. Take them out. Put them on. It\u0027s important. Ditto insulated gloves and flame-resistant clothing.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EWork on a live circuit\u003C/strong\u003E. De-energize the circuit whenever possible. If the situation requires you to work on a live circuit, use properly insulated tools, wear safety glasses or a face shield and insulated gloves, remove watches or other jewellery, stand on an insulated mat and wear flame-resistant clothing, not regular work clothes.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EFail to use proper lockout/ tag-out procedures\u003C/strong\u003E. Just don\u2019t do it.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EKeep both hands on the test\u003C/strong\u003E. No\u2026 Don\u0027t! When working with live circuits, remember the old electrician\u0027s trick. Keep one hand in your pocket. That lessens the chance of a closed circuit across your chest and through your heart. Hang or rest the meter if possible. Try to avoid holding it with your hands to minimize personal exposure to the effects of transients.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003ENeglect your leads\u003C/strong\u003E. Test leads are an important component of DMM safety. Make sure your leads match the CAT level of your job as well. Look for\u00A0\u003Ca href=\u0022https://www.fluke.com/en/products/accessories/test-leads\u0022\u003Etest leads\u003C/a\u003E\u00A0with double insulation, shrouded input connectors, finger guards and a non-slip surface.\u003Cbr /\u003E\n\t\u00A0\u003C/li\u003E\n\u003Cli\u003E\u003Cstrong\u003EHang onto your old test tool forever\u003C/strong\u003E. Today\u0027s test tools contain safety features unheard of even a few years ago, features that are worth the cost of an equipment upgrade and a lot less expensive than an emergency room visit.\u003C/li\u003E\n\u003C/ol\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003ETurn to Fluke\u2019s T6-1000 Electrical Tester:\u003C/p\u003E\n\u003Cp\u003E1. \u003Ca href=\u0022https://www.youtube.com/watch?v=16b1xhXFIhA\u0026amp;list=PL0AHvVniUcgzRtFVdw-UbTU1u0FwFgx18\u0026amp;index=1\u0022\u003E\u003Cstrong\u003EWATCH\u003C/strong\u003E\u003C/a\u003E the T6\u00A0Electrical Tester\u003C/p\u003E\n\u003Cp\u003E2\u003Cstrong\u003E. \u003Ca href=\u0022https://www.youtube.com/watch?v=zck6Qz3mM1o\u0026amp;list=PL0AHvVniUcgzRtFVdw-UbTU1u0FwFgx18\u0026amp;index=2\u0022\u003EWATCH\u003C/a\u003E\u00A0\u003C/strong\u003Ethe T6-1000 Pro Electrical Tester\u003C/p\u003E\n\u003Cp\u003E3. \u003Ca href=\u0022https://www.magnet.co.za/external/magnet-fluke-t6-fieldsense.pdf\u0022\u003E\u003Cstrong\u003EDISCOVER\u003C/strong\u003E\u003C/a\u003E Fluke\u0027s FieldSense technology\u003C/p\u003E\n\u003Cp\u003E4.\u003Cstrong\u003E\u00A0\u003Ca href=\u0022https://www.magnet.co.za/contactus.html\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to us for advice on a Fluke solution for your facility now!\u003C/p\u003E\n",
"created": "Sep 2021",
"terms": "Electrical, Education, Products, Fluke"
},
{
"title": "LEARN | Understanding 3-Phase Transformers pt 3",
"nid": "544",
"body": "\u003Cp class=\u0022text-align-justify\u0022\u003EWe\u2019re unpacking transformers in our NEW series. An important discussion point is the protection of transformers. In this article, we give an overview of protection schemes specifically for oil-type transformers. Catch-up on previous articles in the series:\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Understanding-3-Phase-Transformers-pt-1\u0022\u003E\u003Cstrong\u003EPart 1: Understanding Transformers and how they work\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-electrical/news.php?type=articles\u0026amp;name=LEARN--Understanding-3-Phase-Transformers-pt-2\u0022\u003EPart 2: Advantages, disadvantages and types of 3-Phase Transformers\u003C/a\u003E\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EPart 3: Protection Schemes for Oil Type Transformers\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cimg alt=\u0022Transformer image 2\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022731c793c-8cf8-498f-ba8e-57c9c8fc803c\u0022 height=\u0022247\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Newsletter%20transformers.jpg\u0022 width=\u0022536\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EUnderstanding Transformer Protection\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ETransformer protection is vital in ensuring continuity of your electrical supply, safety as well as preventing damage to the electrical infrastructure in a system or network. Transformer protection schemes are installed in transformers to measure currents, detect faults and issue trip signals to circuit breakers to isolate a fault in an unprotected zone.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EStresses on a Transformer that are generated by a Supply\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA transformer can be stressed by two types of over voltages that may damage or even destroy the transformer. These are:\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EA lightning over voltage that may occur by a lightning strike falling on or near an overhead line that supplies the installation where the transformer is installed\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EA switching over voltage that is generated from the opening of a circuit breaker or a load break switch\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIt is important that over-voltage protection is considered for:\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EThe bushings and insulation on the medium voltage side\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EThe neutral of the transformer (Star point)\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EThe bushing and lines on the low voltage side\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EProtection must be provided against these two types of over voltages, and must be done with the use of Metal Oxide (MO) surge arrestors that are installed on both primary and secondary sides of the transformer. The surge arresters are required to be installed as close as possible to the bushings. An example of the positioning of surge arrestors for a star connected medium voltage transformer can be seen in the figure below.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Cimg alt=\u0022surge arrestors\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022f56eeb2b-6193-4a25-9ad9-9fe25343b0fd\u0022 height=\u0022136\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Figure%201.png\u0022 width=\u0022671\u0022 /\u003E\n\u003Cfigcaption\u003EPositioning of Surge Arrestors on a Medium Voltage Transformer\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EStresses on a Transformer that Result from Overload\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAn increase in the power demand from an installation will cause the transformer supplying it to experience an overload. This increase in demand can either be a result of the progressive increase in load or the addition of new loads to the installation itself. An overload will result in the temperature of the oil and windings increasing in the transformer, with a subsequent reduction in the transformer lifespan.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThermal overload relays are implemented to protect transformers against overload faults. These relays provide protection by simulating the temperature of the transformer winding. The simulation is based on the current measurement and the thermal time constant of the transformer. This relay can also determine the remaining time before the emission of the tripping order and the time delay before re-energizing the transformer. Oil type transformers are also installed with thermostats that control the temperature of the oil.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe thermal overload relay, thermostat or heat sensor generally provides two levels of detection which are:\u003C/p\u003E\n\u003Col\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EA low level signal which is used to alert maintenance staff and isolate the faulted zone in the network\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EA high level signal which is used to de-energize the transformer by issuing a signal to the nearest circuit breaker to isolate the faulted zone\u003C/li\u003E\n\u003C/ol\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003ETIP:\u003C/strong\u003E Schneider Electric has the Easergy, Micom and Sepam series of protection relays that can be used in transformer protection schemes. \u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cstrong\u003ECHAT\u003C/strong\u003E\u003C/a\u003E to us for more information.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EOverheating Protection\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA transformer will overheat when experiencing overloads or short circuit conditions. The allowable overload experienced and the duration of it are both dependent on the transformer type and class of insulation that is used for the transformer.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ETransformers can carry higher loads for a short period of time and if it operates for a very long period, damage to the insulation can occur as the temperature rises above an assumed maximum temperature. An oil-cooled transformer is said to be at maximum when the temperature is equal to 95\u00B0C. If the operating temperature of the transformer is greater than the specified insulated rating, this will then decrease the life expectancy of the transformer and cause breakdown to the insulation over a period of time.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003ETemperature control\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ELarge transformers have winding temperature detection devices that are used to measure and monitor temperature parameters in the windings or winding temperature. The two methods of measurement are hot spot measurement and the second is referred to as the top-oil measurement. A temperature control box can be seen below which consists of a thermometer that is used to measure the temperature of a liquid insulated transformer.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Cimg alt=\u0022Temperature control box\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00226a7df3d7-ce9d-4cff-9ae4-7b05fcc18c8b\u0022 height=\u0022285\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Figure%202.png\u0022 width=\u0022312\u0022 /\u003E\n\u003Cfigcaption\u003ETemperature Control Box\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAs seen in the figure above, the temperature control box consists of a dial gauge that indicates the temperature of the transformer by using the black needle, whilst the red needle is used to set the alarm point. If the black needle surpasses the red needle, then the device will activate an alarm. The high temperature which develops in the core and windings is referred to as the top oil temperature, and it gives an estimate of the hot spot temperature in the core. Currently, overheating protection is achieved using fibre optic cables that are installed within the low voltage winding to accurately measure the temperature of the transformer.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u00A0\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EWe continue our overview of protection schemes in the second instalment of this article. Watch this space for your complete guide to Understanding Transformers\u2026\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ENeed advice on how best to protect your transformer? \u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cstrong\u003ECHAT\u003C/strong\u003E \u003C/a\u003Eto us now!\u003C/p\u003E\n",
"created": "Sep 2021",
"terms": "Electrical, Education"
},
{
"title": "LEARN | Understanding 3-Phase Transformers pt 2",
"nid": "538",
"body": "\u003Cp class=\u0022text-align-justify\u0022\u003EWelcome to part two in your guide on 3-Phase \u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-electrical/index.php\u0022\u003E\u003Cstrong\u003ETransformers\u003C/strong\u003E\u003C/a\u003E. In this NEW series, we\u2019re unpacking the different types of these transformers, how they are connected, their advantages and disadvantages as well as a view on the protection they require. Stay tuned to catch the entire series!\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Understanding-3-Phase-Transformers-pt-1\u0022\u003E\u003Cstrong\u003EPart 1: Understanding Transformers and how they work\u003C/strong\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003EPart 2: Advantages, disadvantages and types of 3-Phase Transformers\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cimg alt=\u0022transformers\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022cfea79d1-4c6d-4768-9316-555d488d7ca5\u0022 height=\u0022287\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Transformers%20application.jpg\u0022 width=\u0022692\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat are the Advantages and Disadvantages of Using a 3-Phase Transformer?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003EThe advantages of using 3-phase transformers are:\u003C/p\u003E\n\u003Col\u003E\n\u003Cli\u003EThe transformer requires less space and is easier to install.\u003C/li\u003E\n\u003Cli\u003EIt weighs less and is smaller in size.\u003C/li\u003E\n\u003Cli\u003EHigher efficiency.\u003C/li\u003E\n\u003Cli\u003EReduction in cost.\u003C/li\u003E\n\u003Cli\u003EThe transportation cost for the transformer is low.\u003C/li\u003E\n\u003C/ol\u003E\n\u003Cp\u003EThe disadvantages of a 3-phase transformer are:\u003C/p\u003E\n\u003Col\u003E\n\u003Cli\u003ERepairs costs of the unit are higher.\u003C/li\u003E\n\u003Cli\u003EThe cost of a spare unit is expensive.\u003C/li\u003E\n\u003Cli\u003EThe entire unit will shut down if there is a fault because of a common core being shared between all 3 units.\u003C/li\u003E\n\u003C/ol\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat are the Different Types of 3-Phase Transformers?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EStep up Transformers: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA step up transformer converts the low voltage (LV) and high current from the primary side of the transformer to a high voltage (HV) and low current magnitude on the secondary side of the transformer.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EStep down Transformer: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA step down transformer performs the conversion of high voltage and low current on the primary side of the transformer to a low voltage and high current magnitude on the secondary side of the transformer.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EPower Transformers: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThese transformers are implemented in a transmission network for stepping up or stepping down the voltage level. A power transformer operates mainly during high or peak loads and has a maximum efficiency at or near full load.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EDistribution Transformers: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThese transformers perform the function of stepping down the voltage for distribution to domestic or commercial users. It has a good voltage regulation and operates for the entire day with maximum efficiency at 50% of the full load.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EInstrument Transformers: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EInstrument transformers such as the current transformer (C.T) and the potential transformer (P.T) are used to reduce high voltages and current to reduced values so that they can be measured using conventional instruments.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EWhat are the Differences between Oil-Cooled and Air-Cooled Transformers?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe process of transforming voltages generates a vast amount of heat that is required to be dissipated to keep them operating safely. Currently, two types of transformers are used in industry and these are either dry-type or oil-cooled transformers. As the name suggests an oil-cooled transformer uses oil whilst a dry-type transformer uses air as a cooling medium. Although both types of transformers are used for the same process, there are differences between these transformers that should be considered before installing one.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EMaintenance: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAn oil-cooled transformer requires more maintenance as opposed to the dry type. The oil from the transformer must be sampled to test for contamination whilst dry type transformers are resistant to chemical contaminants.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cimg alt=\u0022oil-type transformer\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022f7b93422-5854-4eef-acd4-b34e485a6ced\u0022 height=\u0022428\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Oil-Filled-Transformers.jpg\u0022 width=\u0022643\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003EOil-type Transformer\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003ECosts (Initial and operating): \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EDry type transformers have a significantly higher operating loss when compared to oil filled transformers. Oil filled transformers have a higher standard energy efficiency thus resulting in it having a greater lifespan than the dry type.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003ENoise: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EOil cooled transformers operate at a lower sound level resulting in less noise pollution when compared to the dry type.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003ERecyclability: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe end-of-life recycling for a dry-type transformer is limited whilst oil units boast an easier core/coil reclamation. Oil cooled transformers have a superior operating life as well as maintainability, producing less waste and requiring less replacements and labour.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EEfficiency: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EDue to dry type transformers being larger units that are limited in voltage and size, it results in them being more prone to overheating if they should experience an overload. These result in higher electrical losses which is more expensive to maintain. Oil cooled units are smaller in size as well as more efficient. These transformers require less demand and create a smaller environmental footprint.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EVoltage Capabilities: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EDry type transformers are designed for small to medium MVA and voltage ratings which make them ideal for smaller applications. Oil cooled transformers can operate on heavier loads thus making them ideal for applications that require higher voltages.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003ELocation: \u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ELocation is a major factor that will determine which transformer you should select for your application. Dry type transformers are specified for use in buildings as well as near buildings as they are environmentally safer. Dry type transformers are also less flammable and pose less of a fire risk which makes them ideal for shopping malls, hospitals, residential complexes, and other commercial areas.\u00A0 Oil cooled transformers are implemented in outdoor installations as there is a possibility of oil leakage or spills occurring which may result in a fire risk.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Cimg alt=\u0022Dry type transformer\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00221938ee5a-f21e-4a26-9d76-d05bc016864e\u0022 height=\u0022295\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Dry-Type_Transformer_Power_Transformers-1.jpg\u0022 width=\u0022443\u0022 /\u003E\n\u003Cfigcaption\u003EDry-type Transformer\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003EIn the next instalment of the series, we discuss the protection of transformers.\u003C/p\u003E\n\u003Cp\u003ENeed advice on your transformer? \u003Cstrong\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical%20Enquiry\u0022\u003ECHAT\u003C/a\u003E\u003C/strong\u003E to us now!\u003C/p\u003E\n",
"created": "Sep 2021",
"terms": "Electrical, Education"
},
{
"title": "LEARN | Understanding 3-Phase Transformers pt 1",
"nid": "536",
"body": "\u003Cp class=\u0022text-align-justify\u0022\u003EWelcome to your guide on 3-Phase transformers \u2013 what are they, what different types exist, how are they connected, what are their advantages and disadvantages and how do you protect them\u2026 We\u2019re answering all these question in our NEW series. Don\u2019t miss out, \u003Ca href=\u0022https://www.magnetgroup.co.za/news-letter.html\u0022\u003E\u003Cstrong\u003ESUBSCRIBE\u003C/strong\u003E\u003C/a\u003E to receive these newsletters straight to your inbox!\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cimg alt=\u0022Transformer image\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022e75153d9-4ddf-4764-b9b6-5dc680ab9d2f\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Transformer%20image_0.png\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat are Transformers?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA transformer is an electrical device that consists of two or more coils of wire that transfers electrical energy by means of a changing magnetic field. A voltage transformer is a static electro-magnetic device that works on the principle of \u003Cstrong\u003E\u003Ca href=\u0022https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction\u0022\u003EFaraday\u2019s law of induction\u003C/a\u003E\u003C/strong\u003E by converting electrical energy from one magnitude to another. It performs this function by linking together two or more electrical circuits by a common oscillating magnetic field, which is produced by the transformer itself. The 3-phase transformer consists of three sets of primary and secondary windings that have each set wound around one leg of an iron core assembly.\u003C/p\u003E\n\u003Cp\u003EThe below figure is a representation of a 3-Phase Transformer:\u003C/p\u003E\n\u003Cp\u003E\u003Cimg alt=\u00223 Phase transformer \u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022aa1f3d25-2682-45c9-8c25-36eccc9e79ad\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Tranformer3%20phase_0.png\u0022 class=\u0022align-center\u0022 /\u003E\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow do Transformers work?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EAC voltages and currents are used in our daily lives. These are easily generated at a convenient voltage of 20 kV and are then transformed to a much higher voltage of various magnitudes. These voltage levels can either be 132 kV, 275 kV, 400 kV or 765 kV, which are then transmitted across the country. The voltage is transformed to a greater magnitude because a higher voltage will result in a lower current required for the same amount of power. This reduces the \u003Cstrong\u003E\u003Ca href=\u0022https://uk.farnell.com/i2r-loss-definition\u0022\u003EI\u003Csub\u003E2\u003C/sub\u003E*R losses\u003C/a\u003E\u003C/strong\u003E along the networked grid of cables. These high magnitude AC voltages are then transformed down to 11 kV for local distribution and then further reduced to 400 V or 230 V for the end user.\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EHow are 3-Phase Transformers Connected?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe primary and secondary windings of the transformer will either be connected in \u0394 (delta) or Y (wye)/star configurations to form a complete unit. A star connection is one in which the 3-phase windings are joined together at a common point. This common point is known as the star point or neutral point. A delta connection is a connection where the ends of a three-phase winding are joined together. This means that the finishing end of one phase will be connected to the starting end of the other phase thus obtaining a closed circuit.\u00A0\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe diagram below illustrates Star and Delta connections of a Transformer.\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cimg alt=\u0022Star delta\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u002214b211cb-aeca-4ddd-94f9-d0702f24cc22\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Star%20delta.png\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003EThe following are combinations in which a 3-phase transformer can be connected in:\u003C/p\u003E\n\u003Col\u003E\n\u003Cli\u003EY \u2013 Y (Star \u2013 Star)\u003C/li\u003E\n\u003Cli\u003EY \u2013 \u0394 (Star \u2013 Delta)\u003C/li\u003E\n\u003Cli\u003E\u0394 \u2013 Y (Delta \u2013 Star)\u003C/li\u003E\n\u003Cli\u003E\u0394 \u2013 \u0394 (Delta \u2013 Delta)\u003C/li\u003E\n\u003C/ol\u003E\n\u003Cp\u003E\u003Cstrong\u003EStar Connected Transformers\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EStar connected transformers, which are used in high-voltage operations, have the advantage of reducing the voltage on an individual transformer. This reduces the number of turns required and leads to an increase in the size of the conductors, thereby making the coil windings easier and cheaper to insulate as opposed to delta transformers.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EDelta Connected Transformers\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EThe advantage of using a delta-delta connected transformer is that if one transformer in a group of three should experience a fault or become disabled, then the two remaining transformers will continue to deliver 3-phase power with a capacity that is equal to approximately two thirds of the original output from the transformer unit.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn Part 2 of this series, we tackle the different types of 3-Phase Transformers, and compare oil- cooled to air-cooled transformers.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003E\u003C!--![endif]----\u003E\u003C!--![endif]----\u003E\u003C!--![endif]----\u003E\u003C!--![endif]----\u003E\u003C!--![endif]----\u003E\u003C/p\u003E\n",
"created": "Sep 2021",
"terms": "Electrical, Education"
},
{
"title": "LEARN | Condition Monitoring pt 5 - Residual Current Monitoring",
"nid": "502",
"body": "\u003Cp\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-electrical/index.php\u0022\u003E\u003Cimg alt=\u0022RCM\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u0022f5deea5f-34f9-4757-bbcb-21fdd0d11e71\u0022 height=\u0022185\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Control%20Cabinet%201_RZ.jpg\u0022 width=\u0022285\u0022 class=\u0022align-center\u0022 /\u003E\u003C/a\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EResidual Current Monitoring in an Industrial Environment\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EWe\u0027re wrapping up\u00A0our series on \u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Condition-Monitoring-part-4\u0022\u003E\u003Cstrong\u003ECondition Monitoring\u003C/strong\u003E\u003C/a\u003E, by discussing Residual Current Monitoring (RCM) as an essential system to implement in any industrial environment. By monitoring the state of the electrical system in a facility, RCM\u00A0assists in detecting faults early \u2013 reducing downtime and saving money.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003ECatch up on previous articles in our Condition Monitoring series:\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cfont face=\u0022arial, helvetica, sans-serif\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Condition-Monitoring-part-1\u0022\u003E\u003Cstrong\u003EPart 1:\u003C/strong\u003E\u003C/a\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Condition-Monitoring-part-1\u0022\u003E\u003Cstrong\u003EThe benefits of a condition monitoring system\u003C/strong\u003E\u003C/a\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Condition-Monitoring-part-1\u0022\u003E\u00A0\u003C/a\u003E\u003C/font\u003E\u003Cfont color=\u0022#000000\u0022 face=\u0022arial, helvetica, sans-serif\u0022\u003E \u00A0\u003C/font\u003E\u003Cbr /\u003E\n\u003Cfont face=\u0022arial, helvetica, sans-serif\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Condition-Monitoring-part-2---Vibration\u0022\u003E\u003Cstrong\u003EPart 2: Vibration monitoring\u003C/strong\u003E\u003C/a\u003E\u003C/font\u003E\u003Cbr /\u003E\n\u003Cfont face=\u0022arial, helvetica, sans-serif\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-electrical/news.php?type=articles\u0026amp;name=LEARN--Condition-Monitoring-part-3---Vibration-continued\u0022\u003E\u003Cstrong\u003EPart 3: Vibration monitoring continued\u003C/strong\u003E\u003C/a\u003E\u003C/font\u003E\u003Cbr /\u003E\n\u003Cfont face=\u0022arial, helvetica, sans-serif\u0022\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Condition-Monitoring-part-4\u0022\u003E\u003Cstrong\u003EPart 4: A\u003C/strong\u003E\u003C/a\u003E\u003Ca href=\u0022https://www.magnetgroup.co.za/news.php?type=articles\u0026amp;name=LEARN--Condition-Monitoring-part-4\u0022\u003E\u003Cstrong\u003En overview of motor circuit analysis\u003C/strong\u003E\u003C/a\u003E\u003C/font\u003E\u003Cbr /\u003E\n\u00A0\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EIn this fifth and final article in the series, we outline Residual Current Monitoring by discussing what it entails, and the advantages of implementing it in your facility.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EWhat is residual current?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EResidual current is an electric current that flows briefly in the circuit after the voltage has been reduced to zero. This is due to the momentum of charge carriers.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EWhat is Residual Current Monitoring?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EResidual Current Monitoring (RCM) is implemented in an earthed electrical systems to continuously monitor the fault of residual current levels. It monitors the network continuously for faults, and generates an alarm when these occur.\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EExamples of situations that may generate an alarm are:\u003C/strong\u003E\u003C/p\u003E\n\u003Col\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EInsulation damage or degradation\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EWiring errors\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003ENeutral-to-ground faults\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EConnection of defective devices\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EMinute leakage currents that are unable to be picked up by fuses or circuit breakers\u003C/li\u003E\n\u003C/ol\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EWhat are the advantages of Residual Current Monitoring?\u003C/strong\u003E\u003C/p\u003E\n\u003Col\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EEnsures preventative maintenance can occur before an expensive breakdown happens.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EProvides protection for the whole electrical system as well as other electrical devices that are installed.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003ECollection of valuable data from the electrical system.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EPreventative electrical safety for both man and machine.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EReduces operating costs and cost risks.\u003C/li\u003E\n\u003C/ol\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EWhat is the significance of RCM in industrial environments?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E1. Optimised Maintenance:\u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EInformation is obtained immediately by centralised or distributed alarm messages.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EPlanning of time and personnel resources can be done efficiently and effectively through complete documentation and precise location of the fault.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EThe use of remote diagnostics and administration will ensure preventative intervention over a LAN network.\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E2. Increase Fire Protection:\u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EDetection of potential fire hazards caused by high fault currents.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EIndicating a neutral conductor overload or interruption at an early stage, thus preventing material damage.\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E3. Higher Operational and System Safety:\u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EProvides preventative safety, for both man and machine, against the hazard of electrical current.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EMonitors insulation deterioration continuously.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EDetects potential faults when commissioning new electrical installations.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EAlarm messages are sent for signalling or switching off the system.\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E4. Improved Economic Efficiency:\u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EReduction of maintenance and operating expenses.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EUnplanned system downtimes can be avoided through information obtained at early stages.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EIncrease in productivity due to operational reliability.\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EDetection of weak points in the electrical system will assist in investment decisions.\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003E5. Comprehensive Information:\u003C/strong\u003E\u003C/p\u003E\n\u003Cul\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EInformation is displayed clearly on Liquid Crystal Display (LCD).\u003C/li\u003E\n\u003Cli class=\u0022text-align-justify\u0022\u003EEasily integrated into a facility management system.\u003C/li\u003E\n\u003C/ul\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u003Cstrong\u003EWhat is a Residual Current Monitoring device?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA Residual Current Monitor is used to measure residual current. If there is an increase in the residual current, it can be detected and reported at an early stage. As seen in the figure below, the residual current monitor cannot independently interrupt the supply line. A differential current is measured and is sent out by a suitable interface. These devices also have one or more relay outputs that can be used to control circuit breakers.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cimg alt=\u0022RCM\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00224e6a0ebb-b6f7-4995-aa76-003c8ccc8ba6\u0022 height=\u0022286\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/RCM.jpg\u0022 width=\u0022270\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003EWiring of a RCM device\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp\u003E\u003Cstrong\u003EWhat components are used in a Residual Current Monitoring system?\u003C/strong\u003E\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003EA typical residual current monitoring system, as seen in the image below, consists of the current measuring device, relays, circuit breakers and a display.\u003C/p\u003E\n\u003Cp\u003E\u003Cfigure role=\u0022group\u0022 class=\u0022caption caption-img align-center\u0022\u003E\n\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cimg alt=\u0022Schneider Vigirex\u0022 data-entity-type=\u0022file\u0022 data-entity-uuid=\u00229a5bed0f-9cad-4f86-87f1-60c95bc9f4c6\u0022 src=\u0022/cms/drupal8-magnetgroup/sites/default/files/inline-images/Schneider%20Vigirex.JPG\u0022 /\u003E\u003C/a\u003E\n\u003Cfigcaption\u003EEssential components of a RCM system\u003C/figcaption\u003E\n\u003C/figure\u003E\n\u003C/p\u003E\n\u003Cp class=\u0022text-align-justify\u0022\u003E\u00A0\u003C/p\u003E\n\u003Cp\u003EConsidering an \u003Ca href=\u0022https://www.magnetgroup.co.za/solutions-electrical/index.php\u0022\u003E\u003Cstrong\u003ERCM solution\u003C/strong\u003E\u003C/a\u003E for your facility?\u003C/p\u003E\n\u003Cp\u003E\u003Ca href=\u0022mailto:hello@magnetgroup.co.za?subject=Electrical Enquiry\u0022\u003E\u003Cstrong\u003ECHAT\u003C/strong\u003E\u003C/a\u003E to us now!\u003C/p\u003E\n",
"created": "May 2021",
"terms": "Electrical, Education"
}
]
Anyone who makes their living by working with electricity quickly develops a healthy respect for anything with even a remote chance of being "live." Yet, the pressures of the getting a job done on time or getting a mission-critical piece of equipment back on line can result in carelessness and uncharacteristic mistakes by even the most seasoned electrician…
The list below was developed by FLUKE as a quick reminder of what not to do when taking electrical measurements:
Replace the original fuse with a cheaper one. If your digital multimeter meets today's safety standards, that fuse is a spe...
We’re unpacking transformers in our NEW series. An important discussion point is the protection of transformers. In this article, we give an overview of protection schemes specifically for oil-type transformers. Catch-up on previous articles in the series:
Part 1: Understanding Transformers and how they work
Part 2: Advantages, disadvantages and types of 3-Phase Transformers
Part 3: Protection Schemes for Oil Type Transformers
Understanding Transformer Protection
Transformer protection is vital in ensuring continuity of your electrical supply, safety as well as preventing damage to the electr...
Welcome to part two in your guide on 3-Phase Transformers. In this NEW series, we’re unpacking the different types of these transformers, how they are connected, their advantages and disadvantages as well as a view on the protection they require. Stay tuned to catch the entire series!
Part 1: Understanding Transformers and how they work
Part 2: Advantages, disadvantages and types of 3-Phase Transformers
What are the Advantages and Disadvantages of Using a 3-Phase Transformer?
The advantages of using 3-phase transformers are:
The transformer requires less space and is easier to install.
It we...
Welcome to your guide on 3-Phase transformers – what are they, what different types exist, how are they connected, what are their advantages and disadvantages and how do you protect them… We’re answering all these question in our NEW series. Don’t miss out, SUBSCRIBE to receive these newsletters straight to your inbox!
What are Transformers?
A transformer is an electrical device that consists of two or more coils of wire that transfers electrical energy by means of a changing magnetic field. A voltage transformer is a static electro-magnetic device that works on the principle of Faraday’s l...
Residual Current Monitoring in an Industrial Environment
We're wrapping up our series on Condition Monitoring, by discussing Residual Current Monitoring (RCM) as an essential system to implement in any industrial environment. By monitoring the state of the electrical system in a facility, RCM assists in detecting faults early – reducing downtime and saving money.
Catch up on previous articles in our Condition Monitoring series:
Part 1:The benefits of a condition monitoring system
Part 2: Vibration monitoring
Part 3: Vibration monitoring continued
Part 4: An overview of motor circuit analys...